Advertisement

Social Context in Potential Games

  • Martin Hoefer
  • Alexander Skopalik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7695)

Abstract

A prevalent assumption in game theory is that all players act in a purely selfish manner, but this assumption has been repeatedly questioned by economists and social scientists. In this paper, we study a model that allows to incorporate the social context of players into their decision making. We consider the impact of other-regarding preferences in potential games, one of the most popular and central classes of games in algorithmic game theory. Our results concern the existence of pure Nash equilibria and potential functions in games with social context. The main finding is a tight characterization of the class of potential games that admit exact potential functions for any social context. In addition, we prove complexity results on deciding existence of pure Nash equilibria in numerous popular classes of potential games, such as different classes of load balancing, congestion, cost and market sharing games.

Keywords

Delay Function Congestion Game Strategic Game Potential Game Personal Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., Bhardwaj, O., Hoefer, M.: Friendship, altruism, and reward sharing in stable matching and contribution games. CoRR abs/1204.5780 (2012)Google Scholar
  2. 2.
    Apt, K.R., Schäfer, G.: Selfishness Level of Strategic Games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 13–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ashlagi, I., Krysta, P., Tennenholtz, M.: Social Context Games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 675–683. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Buehler, R., Goldman, Z., Liben-Nowell, D., Pei, Y., Quadri, J., Sharp, A., Taggart, S., Wexler, T., Woods, K.: The Price of Civil Society. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 375–382. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M., Papaioannou, E.: The Impact of Altruism on the Efficiency of Atomic Congestion Games. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 172–188. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, H.-L., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM J. Comput. 39(5), 1799–1832 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, P.-A., de Keijzer, B., Kempe, D., Schäfer, G.: The Robust Price of Anarchy of Altruistic Games. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 383–390. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, P.-A., Kempe, D.: Altruism, selfishness, and spite in traffic routing. In: Proc. 9th Conf. Electronic Commerce (EC), pp. 140–149 (2008)Google Scholar
  9. 9.
    Chen, P.-A., Kempe, D.: Bayesian Auctions with Friends and Foes. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 335–346. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Teng, S.-H.: A complexity view of markets with social influence. In: Proc. 2nd Symp. Innovations in Theoretical Compututer Science (ITCS), pp. 141–154 (2011)Google Scholar
  11. 11.
    Elias, J., Martignon, F., Avrachenkov, K., Neglia, G.: Socially-aware network design games. In: Proc. 29th IEEE Conf. Computer Communications (INFOCOM), pp. 41–45 (2010)Google Scholar
  12. 12.
    Fehr, E., Schmidt, K.: The economics of fairness, reciprocity and altruism: Experimental evidence and new theories. In: Handbook on the Economics of Giving, Reciprocity and Altruism, ch. 8, vol. 1, pp. 615–691. Elsevier B.V. (2006)Google Scholar
  13. 13.
    Gintis, H., Bowles, S., Boyd, R., Fehr, E.: Moral Sentiments and Material Interests: The Foundations of Cooperation in Economic Life. MIT Press (2005)Google Scholar
  14. 14.
    Harks, T., Klimm, M.: On the Existence of Pure Nash Equilibria in Weighted Congestion Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 79–89. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Harks, T., Klimm, M., Möhring, R.: Characterizing the existence of potential functions in weighted congestion games. Theory Comput. Syst. 49(1) (2011)Google Scholar
  16. 16.
    Hoefer, M., Penn, M., Polukarov, M., Skopalik, A., Vöcking, B.: Considerate equilibrium. In: Proc. 22nd Intl. Joint Conf. Artif. Intell. (IJCAI), pp. 234–239 (2011)Google Scholar
  17. 17.
    Hoefer, M., Skopalik, A.: Altruism in Atomic Congestion Games. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 179–189. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Hoefer, M., Skopalik, A.: Stability and Convergence in Selfish Scheduling with Altruistic Agents. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 616–622. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Ledyard, J.: Public goods: A survey of experimental resesarch. In: Kagel, J., Roth, A. (eds.) Handbook of Experimental Economics, pp. 111–194. Princeton University Press (1997)Google Scholar
  20. 20.
    Meier, D., Oswald, Y.A., Schmid, S., Wattenhofer, R.: On the windfall of friendship: Inoculation strategies on social networks. In: Proc. 9th Conf. Electronic Commerce (EC), pp. 294–301 (2008)Google Scholar
  21. 21.
    Monderer, D., Shapley, L.: Potential games. Games Econom. Behav. 14, 1124–1143 (1996)MathSciNetGoogle Scholar
  22. 22.
    Morgan, J., Steiglitz, K., Reis, G.: The spite motive and equilibrium behavior in auctions. Contrib. Econ. Anal. Pol. 2(1), 1102–1127 (2003)Google Scholar
  23. 23.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)zbMATHCrossRefGoogle Scholar
  24. 24.
    Vöcking, B.: Selfish load balancing. In: Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.) Algorithmic Game Theory, ch. 20. Cambridge University Press (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Hoefer
    • 1
  • Alexander Skopalik
    • 2
  1. 1.Dept. of Computer ScienceRWTH Aachen UniversityGermany
  2. 2.Dept. of Computer ScienceTU DortmundGermany

Personalised recommendations