Advertisement

A Formal Proof of Square Root and Division Elimination in Embedded Programs

  • Pierre Neron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7679)

Abstract

The use of real numbers in a program can introduce differences between the expected and the actual behavior of the program, due to the finite representation of these numbers. Therefore, one may want to define programs using real numbers such that this difference vanishes. This paper defines a program transformation for a certain class of programs that improves the accuracy of the computations on real number representations by removing the square root and division operations from the original program in order to enable exact computation with addition, multiplication and subtraction. This transformation is meant to be used on embedded systems, therefore the produced programs have to respect constraints relative to this kind of code. In order to ensure that the transformation is correct, i.e., preserves the semantics, we also aim at specifying and proving this transformation using the PVS proof assistant.

Keywords

Program Transformation Program Verification Real Number Arithmetic Safety Critical Embedded Systems Semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boldo, S., Filliâtre, J.-C.: Formal verification of floating-point programs. In: Kornerup, P., Muller, J.-M. (eds.) Proceedings of the 18th IEEE Symposium on Computer Arithmetic, Montpellier, France, pp. 187–194 (June 2007)Google Scholar
  2. 2.
    Boldo, S., Muñoz, C.: A formalization of floating-point numbers in PVS. Report NIA Report No. 2006-01, NASA/CR-2006-214298, NIA-NASA Langley, National Institute of Aerospace, Hampton, VA (2006)Google Scholar
  3. 3.
    Bostan, A.: Algorithmique efficace pour des opérations de base en Calcul formel. Ph.d. thesis (2003), http://algo.inria.fr/bostan/these/These.pdf
  4. 4.
    Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Domain. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cohen, C.: Construction of Real Algebraic Numbers in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition: a synopsis. SIGSAM Bull 10, 10–12 (1976)CrossRefGoogle Scholar
  7. 7.
    Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: IEEE Symposium on Computer Arithmetic, pp. 188–195 (2005)Google Scholar
  8. 8.
    Harrison, J.: Floating Point Verification in HOL. In: Schubert, E.T., Alves-Foss, J., Windley, P. (eds.) HUG 1995. LNCS, vol. 971, pp. 186–199. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    IEEE. IEEE standard for binary floating-point arithmetic. Institute of Electrical and Electronics Engineers, New York, Note: Standard 754–1985 (1985)Google Scholar
  10. 10.
    Maddalon, J., Butler, R., Muñoz, C., Dowek, G.: Mathematical basis for the safety analysis of conflict prevention algorithms. Technical Memorandum NASA/TM-2009-215768, NASA, Langley Research Center, Hampton VA 23681-2199, USA (June 2009)Google Scholar
  11. 11.
    Martel, M.: Program transformation for numerical precision. In: PEPM, pp. 101–110 (2009)Google Scholar
  12. 12.
    Miner, P.S.: Defining the ieee-854 floating-point standard in pvs (1995)Google Scholar
  13. 13.
    Narkawicz, A., Muñoz, C., Dowek, G.: Formal verification of air traffic prevention bands algorithms. Technical Memorandum NASA/TM-2010-216706, NASA, Langley Research Center, Hampton VA 23681-2199, USA (June 2010)Google Scholar
  14. 14.
    Neron, P.: A formal proof of square root and division elimination in embedded programs - long version (2012), http://www.lix.polytechnique.fr/~neron/
  15. 15.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. Univ. of California Press (1951)Google Scholar
  16. 16.
    Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre Neron
    • 1
  1. 1.École Polytechnique - INRIAFrance

Personalised recommendations