Stochastic Gradient Descent Tricks

  • Léon Bottou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7700)

Abstract

Chapter 1 strongly advocates the stochastic back-propagation method to train neural networks. This is in fact an instance of a more general technique called stochastic gradient descent (SGD). This chapter provides background material, explains why SGD is a good learning algorithm when the training set is large, and provides useful recommendations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordes, A., Bottou, L., Gallinari, P.: SGD-QN: Careful quasi-Newton stochastic gradient descent. Journal of Machine Learning Research 10, 1737–1754 (2009); with erratum, JMLR 11, 2229–2240 (2010)MathSciNetMATHGoogle Scholar
  2. 2.
    Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. NIPS Foundation (2008), http://books.nips.cc
  3. 3.
    Bottou, L.: Online algorithms and stochastic approximations. In: Saad, D. (ed.) Online Learning and Neural Networks. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Bousquet, O.: Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms. Ph.D. thesis, Ecole Polytechnique, Palaiseau, France (2002)Google Scholar
  5. 5.
    Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20(3), 273–297 (1995)MATHGoogle Scholar
  6. 6.
    Dennis, J., Schnabel, R.B.: Numerical Methods For Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs (1983)MATHGoogle Scholar
  7. 7.
    Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference, New York (2006)Google Scholar
  8. 8.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Brodley, C.E., Danyluk, A.P. (eds.) Proceedings of the Eighteenth International Conference on Machine Learning (ICML), pp. 282–289. Morgan Kaufmann, Williams College (2001)Google Scholar
  9. 9.
    Lee, W.S., Bartlett, P.L., Williamson, R.C.: The importance of convexity in learning with squared loss. IEEE Transactions on Information Theory 44(5), 1974–1980 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)Google Scholar
  11. 11.
    Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region newton methods for large-scale logistic regression. In: Ghahramani, Z. (ed.) Proc. Twenty-Fourth International Conference on Machine Learning (ICML), pp. 561–568. ACM (2007)Google Scholar
  12. 12.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics, and Probabilities, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  13. 13.
    Massart, P.: Some applications of concentration inequalities to statistics. Annales de la Faculté des Sciences de Toulouse series 6 9(2), 245–303 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Murata, N.: A statistical study of on-line learning. In: Saad, D. (ed.) Online Learning and Neural Networks. Cambridge University Press, Cambridge (1998)Google Scholar
  15. 15.
    Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Robbins, H., Siegmund, D.: A convergence theorem for non negative almost supermartingales and some applications. In: Rustagi, J.S. (ed.) Optimizing Methods in Statistics. Academic Press (1971)Google Scholar
  17. 17.
    Rosenblatt, F.: The perceptron: A perceiving and recognizing automaton. Tech. Rep. 85-460-1, Project PARA, Cornell Aeronautical Lab (1957)Google Scholar
  18. 18.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. I, pp. 318–362. Bradford Books, Cambridge (1986)Google Scholar
  19. 19.
    Ruppert, D.: Efficient estimations from a slowly convergent robbins-monro process. Tech. Rep. 781, Cornell University Operations Research and Industrial Engineering (1988)Google Scholar
  20. 20.
    Sang, E.F.T.K., Buchholz, S.: Introduction to the CoNLL-2000 shared task: Chunking. In: Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E.F. (eds.) Proceedings of CoNLL 2000 and LLL 2000, Lisbon, Portugal, pp. 127–132 (2000)Google Scholar
  21. 21.
    Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated subgradient solver for SVM. In: Proc. 24th Intl. Conf. on Machine Learning (ICML 2007), pp. 807–814. ACM (2007)Google Scholar
  22. 22.
    Shalev-Shwartz, S., Srebro, N.: SVM optimization: inverse dependence on training set size. In: Proceedings of the 25th International Machine Learning Conference (ICML 2008), pp. 928–935. ACM (2008)Google Scholar
  23. 23.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B) 58, 267–288 (1996)MathSciNetMATHGoogle Scholar
  24. 24.
    Tsybakov, A.B.: Optimal aggregation of classifiers in statistical learning. Annals of Statististics 32(1) (2004)Google Scholar
  25. 25.
    Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)CrossRefMATHGoogle Scholar
  26. 26.
    Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: IRE WESCON Conv. Record, Part 4, pp. 96–104 (1960)Google Scholar
  27. 27.
    Xu, W.: Towards optimal one pass large scale learning with averaged stochastic gradient descent (2011), http://arxiv.org/abs/1107.2490
  28. 28.
    Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proc. Twentieth International Conference on Machine Learning (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Léon Bottou
    • 1
  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations