Advertisement

Fast Summation Techniques for Sparse Shape Functions in Tetrahedral hp-FEM

  • Sven Beuchler
  • Veronika Pillwein
  • Sabine Zaglmayr
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Summary

This paper considers the h p-finite element discretization of an elliptic boundary value problem using tetrahedral elements. The discretization uses a polynomial basis in which the number of nonzero entries per row is bounded independently of the polynomial degree. The authors present an algorithm which computes the nonzero entries of the stiffness matrix in optimal complexity. The algorithm is based on sum factorization and makes use of the nonzero pattern of the stiffness matrix.

Keywords

Stiffness Matrix Nonzero Entry Jacobi Polynomial Gaussian Point Tetrahedral Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work has been supported by the FWF projects P20121, P20162, and P23484.

Bibliography

  1. [1].
    Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.Google Scholar
  2. [2].
    I. Babuska, M. Griebel, and J. Pitkäranta. The problem of selecting the shape functions for a p-type finite element. Internat. J. Numer. Methods Engrg., 28(8):1891–1908, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3].
    S. Beuchler and V. Pillwein. Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials. Computing, 80(4):345–375, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4].
    S. Beuchler, V. Pillwein, and S. Zaglmayr. Sparsity optimized high order finite element functions for h(d i v) on simplices. Technical Report 2010-07, RICAM, 2010. submitted.Google Scholar
  5. [5].
    S. Beuchler and J. Schöberl. New shape functions for triangular p-FEM using integrated Jacobi polynomials. Numer. Math., 103(3):339–366, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6].
    Leszek Demkowicz, Jason Kurtz, David Pardo, Maciej Paszyński, Waldemar Rachowicz, and Adam Zdunek. Computing with hp-adaptive finite elements. Vol. 2. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2008. Frontiers: three dimensional elliptic and Maxwell problems with applications.Google Scholar
  7. [7].
    George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, second edition, 2005.Google Scholar
  8. [8].
    J.M. Melenk, K. Gerdes, and C. Schwab. Fully discrete h p-finite elements: Fast quadrature. Comp. Meth. Appl. Mech. Eng., 190:4339–4364, 1999.CrossRefGoogle Scholar
  9. [9].
    Ch. Schwab. p- and hp-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sven Beuchler
    • 1
  • Veronika Pillwein
    • 2
  • Sabine Zaglmayr
    • 3
  1. 1.Institute for Numerical SimulationUniversity BonnBonnGermany
  2. 2.RISCUniversity LinzLinzAustria
  3. 3.CST - Computer Simulation Technology AGDarmstadtGermany

Personalised recommendations