Advertisement

An Algebraic Multigrid Method Based on Matching in Graphs

  • James BrannickEmail author
  • Yao Chen
  • Johannes Kraus
  • Ludmil Zikatanov
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Abstract

We present an Algebraic Multigrid (AMG) method for graph Laplacian problems. The coarse graphs are constructed recursively by pair-wise aggregation, or matching as in [3] and we use an Algebraic Multilevel Iterations (AMLI) [1, 6] for the solution phase.

Keywords

Structure Grid Unstructured Grid Graph Match Coarse Space Unweighted Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the support by the Austrian Academy of Sciences and by the Austrian Science Fund (FWF), Project No. P19170-N18 and the support from the National Science Foundation under grants NSF-DMS 0810982 and NSF-OCI 0749202.

Bibliography

  1. 1.
    O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods. II. SIAM J. Numer. Anal., 27(6):1569–1590, 1990.Google Scholar
  2. 2.
    R. D. Falgout, P.S. Vassilevski, and L.T. Zikatanov. On two-grid convergence estimates. Numer. Linear Algebra Appl., 12(5–6):471–494, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    H. Kim, J. Xu, and L. Zikatanov. A multigrid method based on graph matching for convection-diffusion equations. Numer. Linear Algebra Appl., 10(1–2):181–195, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Yousef Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, PA, 2nd edition, 2003.Google Scholar
  5. 5.
    U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press Inc., San Diego, CA, 2001.zbMATHGoogle Scholar
  6. 6.
    P. S. Vassilevski. Multilevel block factorization preconditioners. Springer, New York, 2008.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • James Brannick
    • 1
    Email author
  • Yao Chen
    • 1
  • Johannes Kraus
    • 2
  • Ludmil Zikatanov
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations