Advertisement

Area Bounds of Rectilinear Polygons Realized by Angle Sequences

  • Sang Won Bae
  • Yoshio Okamoto
  • Chan-Su Shin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)

Abstract

Given a sequence S of angles at n vertices of a rectilinear polygon, S directly defines (or realizes) a set of rectilinear polygons in the integer grid. Among such realizations, we consider the one P(S) with minimum area. Let δ(n) be the minimum of the area of P(S) over all angle sequences S of length n, and Δ(n) be the maximum. In this paper, we provide the explicit formula for δ(n) and Δ(n).

Keywords

Minimum Area Simple Polygon Monotone Sequence Counterclockwise Order Extreme Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajuelos, A.L., Tomás, A.P., Marques, F.: Partitioning Orthogonal Polygons by Extension of All Edges Incident to Reflex Vertices: Lower and Upper Bounds on the Number of Pieces. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 127–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data. Theoretical Computer Science 412, 4161–4172 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon from its visibility angles. Computational Geometry: Theory and Applications 45, 254–257 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Disser, Y., Mihalák, M., Widmayer, P.: Reconstructing a simple polygon from its angles. Computational Geometry: Theory and Applications 44, 418–426 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. Journal of Geometry 21, 118–130 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    O’Rourke, J.: Uniqueness of orthogonal connect-the-dots. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 97–104 (1988)Google Scholar
  7. 7.
    Tomás, A.P., Bajuelos, A.L.: Generating Random Orthogonal Polygons. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 364–373. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sang Won Bae
    • 1
  • Yoshio Okamoto
    • 2
  • Chan-Su Shin
    • 3
  1. 1.Dept. of Computer ScienceKyonggi UniversityKorea
  2. 2.Dept. of Communication Engineering and InformaticsUniversity of Electro-CommunicationsJapan
  3. 3.Dept. of Digital Information EngineeringHankuk University of Foreign StudiesKorea

Personalised recommendations