Advertisement

An Improved Algorithm for Static 3D Dominance Reporting in the Pointer Machine

  • Christos Makris
  • Konstantinos Tsakalidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)

Abstract

We present an efficient algorithm for the pointer machine model that preprocesses a set of n three-dimensional points in O(nlogn) worst case time to construct an O(n) space data structure that supports three-dimensional dominance reporting queries in O(logn + t) worst case time, when t points are reported. Previous results achieved either O(n 2) worst case or O(nlogn) expected preprocessing time. The novelty of our approach is that we employ persistent data structures and exploit geometric observations of previous works, in order to achieve a drastic reduction in the worst case preprocessing time.

Keywords

computational geometry dominance reporting persistent data structures pointer machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afshani, P.: On Dominance Reporting in 3D. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 41–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K.: Range searching. In: Handbook of Discrete and Computational Geometry, pp. 575–598. CRC Press, Inc. (1997)Google Scholar
  3. 3.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Advances in Discrete and Computational Geometry, pp. 1–56. American Mathematical Society (1999)Google Scholar
  4. 4.
    Brodal, G.S.: Partially persistent data structures of bounded degree with constant update time. Nord. J. Comput. 3(3), 238–255 (1996)MathSciNetGoogle Scholar
  5. 5.
    Chan, T.M.: Persistent predecessor search and orthogonal point location on the word ram. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1131–1145. SIAM (2011)Google Scholar
  6. 6.
    Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM, revisited. In: Hurtado, F., van Kreveld, M.J. (eds.) Symposium on Computational Geometry, pp. 1–10. ACM (2011)Google Scholar
  7. 7.
    Chazelle, B.: Filtering search: A new approach to query-answering. SIAM J. Comput. 15(3), 703–724 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chazelle, B., Edelsbrunner, H.: Linear space data structures for two types of range search. Discrete & Computational Geometry 2, 113–126 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38, 86–124 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lee, D.-T., Preparata, F.P.: An improved algorithm for the rectangle enclosure problem. J. Algorithms 3(3), 218–224 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Makris, C., Tsakalidis, A.K.: Algorithms for three-dimensional dominance searching in linear space. Inf. Process. Lett. 66(6), 277–283 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nekrich, Y.: A Fast Algorithm for Three-Dimensional Layers of Maxima Problem. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 607–618. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–679 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saxena, S.: Dominance made simple. Inf. Process. Lett. 109(9), 419–421 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christos Makris
    • 1
  • Konstantinos Tsakalidis
    • 1
  1. 1.Computer Engineering and Informatics DepartmentUniversity of PatrasPatrasGreece

Personalised recommendations