ISAAC 2012: Algorithms and Computation pp 14-23

# Closing Complexity Gaps for Coloring Problems on H-Free Graphs

• Petr A. Golovach
• Daniël Paulusma
• Jian Song
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)

## Abstract

If a graph G contains no subgraph isomorphic to some graph H, then G is called H-free. A coloring of a graph G = (V,E) is a mapping c: V → {1,2,…} such that no two adjacent vertices have the same color, i.e., c(u) ≠ c(v) if uv ∈ E; if |c(V)| ≤ k then c is a k-coloring. The Coloring problem is to test whether a graph has a coloring with at most k colors for some integer k. The Precoloring Extension problem is to decide whether a partial k-coloring of a graph can be extended to a k-coloring of the whole graph for some integer k. The List Coloring problem is to decide whether a graph allows a coloring, such that every vertex u receives a color from some given set L(u). By imposing an upper bound ℓ on the size of each L(u) we obtain the ℓ-List Coloring problem. We first classify the Precoloring Extension problem and the ℓ-List Coloring problem for H-free graphs. We then show that 3-List Coloring is NP-complete for n-vertex graphs of minimum degree n − 2, i.e., for complete graphs minus a matching, whereas List Coloring is fixed-parameter tractable for this graph class when parameterized by the number of vertices of degree n − 2. Finally, for a fixed integer k > 0, the List k -Coloring problem is to decide whether a graph allows a coloring, such that every vertex u receives a color from some given set L(u) that must be a subset of {1,…,k}. We show that List 4-Coloring is NP-complete for P 6-free graphs, where P 6 is the path on six vertices. This completes the classification of List k -Coloring for P 6-free graphs.

## References

1. 1.
Bonomo, F., Durán, G., Marenco, J.: Exploring the complexity boundary between coloring and list-coloring. Ann. Oper. Res. 169, 3–16 (2009)
2. 2.
Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity Results on Coloring P k-Free Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)
3. 3.
Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science 414, 9–19 (2012)
4. 4.
Erdös, P., Rubin, A.L., Taylor, H.: Choosabilty in graphs. In: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, pp. 125–157 (1979)Google Scholar
5. 5.
Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-Free Graphs When H Is Small. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 289–300. Springer, Heidelberg (2012)
6. 6.
Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)
7. 7.
Hopcroft, J.E., Karp, R.M.: An $$n^{\frac{5}{2}}$$ algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)
8. 8.
Hujter, M., Tuza, Z.: Precoloring extension. II. Graph classes related to bipartite graphs. Acta Math. Univ. Comenianae LXII, 1–11 (1993)
9. 9.
Jansen, K.: Complexity Results for the Optimum Cost Chromatic Partition Problem. Universität Trier, Mathematik/Informatik, Forschungsbericht, pp. 96–41 (1996)Google Scholar
10. 10.
Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl. Math. 75, 135–155 (1997)
11. 11.
Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)
12. 12.
Kratsch, D., Müller, H.: Colouring AT-Free Graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 707–718. Springer, Heidelberg (2012)
13. 13.
Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contributions to Discrete Math. 2, 61–66 (2007)
14. 14.
Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)
15. 15.
Marx, D.: Precoloring extension on unit interval graphs. Discrete Applied Mathematics 154, 995–1002 (2006)
16. 16.
Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P 6-free graphs. Discrete Appl. Math. 136, 299–313 (2004)
17. 17.
Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs Combin. 20, 1–40 (2004)
18. 18.
Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp. 216–226 (1978)Google Scholar
19. 19.
Stacho, J.: 3-Colouring AT-free graphs in polynomial time. Algorithmica 64, 384–399 (2012)
20. 20.
Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)
21. 21.
Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz., no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 3–10 (1976)

## Authors and Affiliations

• Petr A. Golovach
• 1
• Daniël Paulusma
• 2
• Jian Song
• 2
1. 1.Department of InformaticsBergen UniversityBergenNorway
2. 2.School of Engineering and Computing SciencesDurham University, Science LaboratoriesDurhamUnited Kingdom