Extending Partial Representations of Subclasses of Chordal Graphs

  • Pavel Klavík
  • Jan Kratochvíl
  • Yota Otachi
  • Toshiki Saitoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)

Abstract

Chordal graphs are intersection graphs of subtrees in a tree. We investigate complexity of the partial representation extension problem for chordal graphs. A partial representation specifies a tree T′ and some pre-drawn subtrees. It asks whether it is possible to construct a representation inside a modified tree T which extends the partial representation (keeps the pre-drawn subtrees unchanged).

We consider four modifications of T′ and get vastly different problems. In some cases, the problem is interesting even if just T′ is given and no subtree is pre-drawn. Also, we consider three well-known subclasses of chordal graphs: Proper interval graphs, interval graphs and path graphs. We give an almost complete complexity characterization.

In addition, we study parametrized complexity by the number of pre-drawn subtrees, the number of components and the size of the tree T′. We describe an interesting relation with integer partition problems. The problem 3-Partition is used in the NP-completeness reductions. The BinPacking problem is closely related to the extension of interval graphs when space in T′ is limited, and we obtain “equivalency” with BinPacking.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. CoRR abs/1112.0245 (2011)Google Scholar
  2. 2.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using pq-tree algorithms. Journal of Computational Systems Science 13, 335–379 (1976)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Information Processing Letters 55(2), 99–104 (1995)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM Journal on Discrete Mathematics 23(4), 1905–1953 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. North-Holland Publishing Co. (2004)Google Scholar
  9. 9.
    Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin Packing with Fixed Number of Bins Revisited. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 260–272. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending Partial Representations of Function Graphs and Permutation Graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Klavík, P., Kratochvíl, J., Otachi, Y., Ignaz, R., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs (in preparation, 2012)Google Scholar
  12. 12.
    Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending Partial Representations of Interval Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Comput. Math. Appl. 25, 15–25 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5(2), 266–283 (1976)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schäffer, A.A.: A faster algorithm to recognize undirected path graphs. Discrete Appl. Math. 43, 261–295 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavel Klavík
    • 1
  • Jan Kratochvíl
    • 1
  • Yota Otachi
    • 2
  • Toshiki Saitoh
    • 3
  1. 1.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Graduate School of EngineeringKobe UniversityNadaJapan

Personalised recommendations