Universal Point Subsets for Planar Graphs

  • Patrizio Angelini
  • Carla Binucci
  • William Evans
  • Ferran Hurtado
  • Giuseppe Liotta
  • Tamara Mchedlidze
  • Henk Meijer
  • Yoshio Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)


A set S of k points in the plane is a universal point subset for a class \({\mathcal G}\) of planar graphs if every graph belonging to \({\mathcal G}\) admits a planar straight-line drawing such that k of its vertices are represented by the points of S. In this paper we study the following main problem: For a given class of graphs, what is the maximum k such that there exists a universal point subset of size k? We provide a [\({\sqrt{n} \;}\)] lower bound on k for the class of planar graphs with n vertices. In addition, we consider the value \(F(n, {\mathcal G})\) such that every set of \(F(n, {\mathcal G})\) points in general position is a universal subset for all graphs with n vertices belonging to the family \({\mathcal G}\), and we establish upper and lower bounds for \(F(n, {\mathcal G})\) for different families of planar graphs, including 4-connected planar graphs and nested-triangles graphs.


Planar Graph General Position Maximal Chain Outer Face Geometric Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, P.: On embedding an outer-planar graph in a point set. Comp. Geom. 23(3), 303–312 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A polynomial bound for untangling geometric planar graphs. Discrete & Comp. Geom. 42(4), 570–585 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brandenburg, F.-J.: Drawing planar graphs on \(\frac{8}{9}n^2\) area. Electronic Notes in Discrete Mathematics 31, 37–40 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algor. and Applic. 10(2), 353–363 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51(1), 161–166 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)zbMATHGoogle Scholar
  8. 8.
    Goodman, J.E., Pollack, R.: Allowable sequences and order types in discrete and computational geometry. In: New Trends in Discrete and Comp. Geom., pp. 103–134 (1993)Google Scholar
  9. 9.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Olaverri, A.G., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic plane graphs on given point sets. Comput. Geom. 42(9), 913–922 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pach, J., Agarwal, P.K.: Geometric graphs. In: Comb. Geom., pp. 223–239. Wiley (1995)Google Scholar
  13. 13.
    Ravsky, A., Verbitsky, O.: On Collinear Sets in Straight-Line Drawings. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 295–306. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Read, R.: A new method for drawing a planar graph given the cyclic order of the edges at each vertex. Congressus Numeration 56, 31–44 (1987)MathSciNetGoogle Scholar
  15. 15.
    Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA, pp. 138–148. SIAM (1990)Google Scholar
  16. 16.
    Stein, S.K.: Convex maps. Proc. of the Amer. Math. Society 2(3), 464–466 (1951)zbMATHCrossRefGoogle Scholar
  17. 17.
    Thomassen, C.: Interval representations of planar graphs. J. of Comb. Theory, Series B 40(1), 9–20 (1986)zbMATHCrossRefGoogle Scholar
  18. 18.
    Tóth, C.D.: Axis-aligned subdivisions with low stabbing numbers. SIAM J. Discrete Math. 22(3), 1187–1204 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 10, 304–320 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–768 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Wagner, K.: Bemerkungen zum vierfarbenproblem. Jahresbericht. German. Math.-Verein. 46, 26–32 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Carla Binucci
    • 2
  • William Evans
    • 3
  • Ferran Hurtado
    • 4
  • Giuseppe Liotta
    • 2
  • Tamara Mchedlidze
    • 5
  • Henk Meijer
    • 6
  • Yoshio Okamoto
    • 7
  1. 1.Roma Tre UniversityItaly
  2. 2.University of PerugiaItaly
  3. 3.University of British ColumbiaCanada
  4. 4.Universitat Politécnica de CatalunyaSpain
  5. 5.Karlsruhe Institute of TechnologyGermany
  6. 6.Roosevelt AcademyNetherlands
  7. 7.University of Electro-CommunicationsJapan

Personalised recommendations