Advertisement

On the Number of Upward Planar Orientations of Maximal Planar Graphs

  • Fabrizio Frati
  • Joachim Gudmundsson
  • Emo Welzl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)

Abstract

We consider the problem of determining the maximum and the minimum number of upward planar orientations a maximal planar graph can have. We show that n-vertex maximal planar graphs have at least Ω(n ·1.189 n ) and at most O(n ·4 n ) upward planar orientations. Moreover, there exist n-vertex maximal planar graphs having as few as O(n ·2 n ) upward planar orientations and n-vertex maximal planar graphs having Ω(2.599 n ) upward planar orientations.

Keywords

Directed Graph Planar Graph Internal Vertex Outer Face Internal Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Buchin, K., Schulz, A.: On the Number of Spanning Trees a Planar Graph Can Have. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 110–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discr. Appl. Math. 56(2-3), 157–179 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)zbMATHCrossRefGoogle Scholar
  5. 5.
    Fusy, E., Poulalhon, D., Schaeffer, G.: Bijective counting of plane bipolar orientations. Elec. Notes Discr. Math. 29, 283–287 (2007)CrossRefGoogle Scholar
  6. 6.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Graham, R.L., Yao, A.C., Yao, F.F.: Information bounds are weak in the shortest distance problem. J. ACM 27(3), 428–444 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kahale, N., Schulman, L.J.: Bounds on the chromatic polynomial and on the number of acyclic orientations of a graph. Combinatorica 16(3), 383–397 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kelly, D.: Fundamentals of planar ordered sets. Disc. Math. 63(2-3), 197–216 (1987)zbMATHCrossRefGoogle Scholar
  10. 10.
    Manber, U., Tompa, M.: The effect of number of hamiltonian paths on the complexity of a vertex-coloring problem. SIAM J. Comput. 13(1), 109–115 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Mehlhorn, K.: Data Structures and Algorithms: Multi-dimensional Searching and Computational Geometry, vol. 3. Springer (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabrizio Frati
    • 1
  • Joachim Gudmundsson
    • 1
  • Emo Welzl
    • 2
  1. 1.School of Information TechnologiesThe University of SydneyAustralia
  2. 2.Institute of Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations