Strong Conflict-Free Coloring for Intervals

  • Panagiotis Cheilaris
  • Luisa Gargano
  • Adele A. Rescigno
  • Shakhar Smorodinsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)

Abstract

We consider the k-strong conflict-free (k-SCF) coloring of a set of points on a line with respect to a family of intervals: Each point on the line must be assigned a color so that the coloring is conflict-free in the following sense: in every interval I of the family there are at least k colors each appearing exactly once in I.

We first present a polynomial time algorithm for the general problem; the algorithm has approximation ratio 2 when k = 1 and \(5-\frac{2}{k}\) when k > 1 (our analysis is tight). In the special case of a family that contains all possible intervals on the given set of points, we show that a 2-approximation algorithm exists, for any k ≥ 1. We also show that the problem of deciding whether a given family of intervals can be 1-SCF colored with at most q colors has a quasipolynomial time algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abam, M.A., de Berg, M., Poon, S.H.: Fault-tolerant conflict-free coloring. In: Proc. 20th Canadian Conference on Computational Geometry, CCCG (2008)Google Scholar
  2. 2.
    Abellanas, M., Bose, P., Garcia, J., Hurtado, F., Nicolas, M., Ramos, P.A.: On properties of higher order Delaunay graphs with applications. In: Proc. 21st European Workshop on Computational Geometry (EWCG), pp. 119–122 (2005)Google Scholar
  3. 3.
    Bar-Noy, A., Cheilaris, P., Olonetsky, S., Smorodinsky, S.: Online conflict-free colouring for hypergraphs. Combin. Probab. Comput. 19, 493–516 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Deterministic conflict-free coloring for intervals: from offline to online. ACM Trans. Alg. 4(4) (2008)Google Scholar
  5. 5.
    Chen, K., Fiat, A., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM J. Comput. 36, 545–554 (2006)CrossRefGoogle Scholar
  6. 6.
    Cui, Z., Hu, Z.C.: k-conflict-free coloring and k-strong-conflict-free coloring for one class of hypergraphs and online k-conflict-free coloring. ArXiv abs/1107.0138 (2011)Google Scholar
  7. 7.
    Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94–136 (2003)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Horev, E., Krakovski, R., Smorodinsky, S.: Conflict-Free Coloring Made Stronger. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 105–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Katz, M., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line with respect to a set of intervals. Comput. Geom. 45, 508–514 (2012)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lev-Tov, N., Peleg, D.: Conflict-free coloring of unit disks. Discrete Appl. Math. 157(7), 1521–1532 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nguyen, H.L., Nguyen, U.T.: Algorithms for bandwidth efficient multicast routing in multi-channel multi-radio wireless mesh networks. In: Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 1107–1112 (2011)Google Scholar
  12. 12.
    Papadimitriou, C.: Computational Complexity. Addison Wesley (1993)Google Scholar
  13. 13.
    Smorodinsky, S.: Conflict-free coloring and its applications. ArXiv abs/1005.3616 (2010)Google Scholar
  14. 14.
    Zeng, G., Wang, B., Ding, Y., Xiao, L., Mutka, M.: Efficient multicast algorithms for multichannel wireless mesh networks. IEEE Trans. Parallel Distrib. Systems 21, 86–99 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Panagiotis Cheilaris
    • 1
  • Luisa Gargano
    • 2
  • Adele A. Rescigno
    • 2
  • Shakhar Smorodinsky
    • 3
  1. 1.Faculty of InformaticsUniversità della Svizzera italianaSwitzerland
  2. 2.Dipartimento di InformaticaUniversity of SalernoFiscianoItaly
  3. 3.Mathematics DepartmentBen-Gurion UniversityBe’er ShevaIsrael

Personalised recommendations