Rectilinear Covering for Imprecise Input Points

(Extended Abstract)
  • Hee-Kap Ahn
  • Sang Won Bae
  • Shin-ichi Tanigawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)


We consider the rectilinear k-center problem in the presence of impreciseness of input points. We assume that the input is a set S of n unit squares, possibly overlapping each other, each of which is interpreted as a measured point with an identical error bound under the L ∞  metric on ℝ2. Our goal, in this work, is to analyze the worst situation with respect to the rectilinear k-center for a given set S of unit squares. For the purpose, we are interested in a value λk(S) that is the minimum side length of k congruent squares by which any possible true point set from S can be covered. We show that, for k = 1 or 2, computing λk(S) is equivalent to the problem of covering the input squares S completely by k squares, and thus one can solve the problem in linear time. However, for k ≥ 3, this is not the case, and we present an O(n logn)-time algorithm for computing λ3(S). For structural observations, we introduce a new notion on geometric covering, namely the covering-family, which is of independent interest.


  1. 1.
    Ahn, H.K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the discrete Fréchet distance with imprecise input. Int. J. Comput. Geometry Appl. 22(1), 27–44 (2012)MATHCrossRefGoogle Scholar
  2. 2.
    Buchin, K., Löffler, M., Morin, P., Mulzer, W.: Preprocessing imprecise points for Delaunay triangulation: Simplified and extended. Algorithmica 61(3), 674–693 (2011)MATHCrossRefGoogle Scholar
  3. 3.
    Drezner, Z.: On the rectangular p-center problem. Naval Res. Logist. 34(2), 229–234 (1987)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Frederickson, G., Johnson, D.: Generalized selection and ranking: Sorted matrices. SIAM J. Comput. 13(1), 14–30 (1984)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hoffmann, M.: Covering polygons with few rectangles. In: Proc. 17th Euro. Workshop Comp. Geom. (EuroCG 2001), pp. 39–42 (2001)Google Scholar
  6. 6.
    Hoffmann, M.: A simple linear algorithm for computing rectilinear 3-centers. Comput. Geom. Theory Appl. 31, 150–165 (2005)MATHCrossRefGoogle Scholar
  7. 7.
    Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the intersection radius of a set of convex polygons. J. Algo. 20, 244–267 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise input data. In: Proc. 15th Canadian Conf. Comput. Geom., pp. 94–97 (2003)Google Scholar
  9. 9.
    Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. Theoretical Comput. Sci. 412(32), 4173–4186 (2011)MATHCrossRefGoogle Scholar
  10. 10.
    Ko, M., Lee, R., Chang, J.: An optimal approximation algorithm for the rectilinear m-center problem. Algorithmica 5, 341–352 (1990)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ko, M., Lee, R., Chang, J.: Rectilinear m-center problem. Naval Res. Logist. 37(3), 419–427 (1990)MathSciNetMATHGoogle Scholar
  12. 12.
    Löffler, M.: Data Imprecision in Computational Geometry. Ph.D. thesis, Utrecht University (2009)Google Scholar
  13. 13.
    Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time after preprocessing. Comput. Geom.: Theory and Appl. 43(3), 234–242 (2010)MATHCrossRefGoogle Scholar
  14. 14.
    Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for imprecise points. In: Proc. 10th Scandinavian Workshop Algo. Theory, pp. 375–387 (2006)Google Scholar
  15. 15.
    Megiddo, M., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Segal, M.: On piercing sets of axis-parallel rectangles and rings. Int. J. Comput. Geometry Appl. 9(3), 219–234 (1999)MATHCrossRefGoogle Scholar
  17. 17.
    Sember, J., Evans, W.: Guaranteed Voronoi diagrams of uncertain sites. In: Proc. 20th Canadian Conf. Comput. (2008)Google Scholar
  18. 18.
    Sharir, M., Welzl, E.: Rectilinear and polygonal p-piercing and p-center problems. In: Proc. 12th Annu. Sympos. Comp. Geom (SoCG 1996), pp. 122–132 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Sang Won Bae
    • 2
  • Shin-ichi Tanigawa
    • 3
  1. 1.Department of Computer Science and EngineeringPOSTECHPohangKorea
  2. 2.Department of Computer ScienceKyonggi UniversitySuwonKorea
  3. 3.Research Institute for Mathematical ScienceKyoto UniversityKyotoJapan

Personalised recommendations