Counting Partitions of Graphs

  • Pavol Hell
  • Miki Hermann
  • Mayssam Mohammadi Nevisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7676)


Recently, there has been much interest in studying certain graph partitions that generalize graph colourings and homomorphisms. They are described by a pattern, usually viewed as a symmetric {0, 1, *}-matrix M. Existing results focus on recognition algorithms and characterization theorems for graphs that admit such M-partitions, or M-partitions in which vertices of the input graph G have lists of admissible parts. In this paper we study the complexity of counting M-partitions. The complexity of counting problems for graph colourings and homomorphisms have been previously classified, and most turned out to be #P-complete, with only trivial exceptions where the counting problems are easily solvable in polynomial time. By contrast, we exhibit many M-partition problems with interesting non-trivial counting algorithms; moreover these algorithms appear to depend on highly combinatorial tools. In fact, our tools are sufficient to classify the complexity of counting M-partitions for all matrices M of size less than four. It turns out that, among matrices not acccounted for by the existing results on counting homomorphisms, all matrices which do not contain the matrices for independent sets or cliques yield tractable counting problems.


partitions polynomial algorithms #P-completeness dichotomy counting problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bulatov, A.A.: Tractable conservative constraint satisfaction problems. In: LICS, pp. 321–330 (2003)Google Scholar
  2. 2.
    Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26, 499–514 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chvátal, V.: Star-cutsets and perfect graphs. J. Comb. Th. B 39, 189–199 (1985)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: The stubborn problem is stubborn no more. In: SODA 2011, pp. 1666–1674 (2011)Google Scholar
  5. 5.
    Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM Journal on Algebraic and Discrete Methods 7, 331–335 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. In: SODA 1999, pp. 246–255 (1999)Google Scholar
  7. 7.
    de Figueiredo, C.M.H.: The P versus NP-complete dichotomy of some challenging problems in graph theory. Discrete Applied Math. (in press)Google Scholar
  8. 8.
    Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16, 449–478 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction. SIAM J. Comput. 28, 57–104 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    de Figueiredo, C.M.H., Klein, S., Kohayakawa, Y., Reed, B.: Finding skew partitions efficiently. J. Algorithms 37, 505–521 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Hungarica 18, 25–66 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Computer Science Review 4, 41–59 (2010)CrossRefGoogle Scholar
  13. 13.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  14. 14.
    Hell, P.: Graph partitions with prescribed patterns (to appear)Google Scholar
  15. 15.
    Hell, P., Klein, S., Protti, F., Tito, L.: On generalized split graphs. Electronic Notes in Discrete Math. 7, 98–101 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hell, P., Nešetřil, J.: On the complexity of H–colouring. J. Combin. Theory B 48, 92–110 (1990)zbMATHCrossRefGoogle Scholar
  17. 17.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Univ. Press (2004)Google Scholar
  18. 18.
    Hell, P., Nešetřil, J.: Counting list homomorphisms and graphs with bounded degrees. In: Nešetřil, J., Winkler, P. (eds.) Graphs, Morphisms and Statistical Physics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 63, pp. 105–112 (2004)Google Scholar
  19. 19.
    Hell, P., Nešetřil, J.: Colouring, constraint satisfaction, and complexity. Computer Science Review 2, 143–163 (2008)CrossRefGoogle Scholar
  20. 20.
    Jeavons, P.: On the structure of combinatorial problems. Theoretical Comp. Science 200, 185–204 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing 12, 777–788 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavol Hell
    • 1
  • Miki Hermann
    • 2
  • Mayssam Mohammadi Nevisi
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.LIX CNRS UMR 7161, École PolytechniquePalaiseauFrance

Personalised recommendations