Semantic Network Monitoring and Control over Heterogeneous Network Models and Protocols,

  • Christopher J. Matheus
  • Aidan Boran
  • Dominic Carr
  • Rem Collier
  • Barnard Kroon
  • Olga Murdoch
  • Gregory M. P. O’Hare
  • Michael O’Grady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7669)

Abstract

To accommodate the proliferation of heterogeneous network models and protocols we propose the use of semantic technologies to enable an abstract treatment of networks. Network adapters are employed to lift network specific data into a semantic representation that is grounded in an upper level “NetCore” ontology. Semantic reasoning integrates the disparate network models and protocols into a common RDF-based data model that network applications can be written against without requiring intimate knowledge of the various low level-network details. The system permits the automatic discovery of new devices, the monitoring of device state and the invocation of device actions in a generic fashion that works across network types, including non-telecommunication networks such as social networks. A prototype system called SNoMAC is described that employs the proposed approach operating over UPnP, TR-069 and SIXTH network models and protocols. A major benefit of this approach is that the addition of new models/protocols requires relatively little effort and merely involves the development of a new network adapter based on an ontology grounded in NetCore.

Keywords

semantic computing sensing web network monitoring home area networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloulou, H., Mokhtari, M., Tiberghien, T., Biswas, J., Kenneth, L.J.H.: A Semantic Plug&Play Based Framework for Ambient Assisted Living. In: Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.) ICOST 2012. LNCS, vol. 7251, pp. 165–172. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema (February 2004)Google Scholar
  3. 3.
    Bröring, A., Maué, P., Janowicz, K., Nüst, D., Malewski, C.: Semantically-enabled sensor plug and play for the sensor web. Sensors 11(8), 7568–7605 (2011)CrossRefGoogle Scholar
  4. 4.
    Cruz, T., Simoes, P., Batista, P., Almeida, J., Monteiro, E., Bastos, F.: CWMP extensions for enhanced management of domestic network services. In: Proceedings of the 2010 IEEE 35th Conference on Local Computer Networks, LCN 2010, pp. 180–183. IEEE Computer Society, Washington, DC (2010)Google Scholar
  5. 5.
    UPnP Forum. UPnP Device Architecture 1.0. (April 2008), http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
  6. 6.
    Garlik, S.H., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-query/
  7. 7.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  8. 8.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology Language Primer. W3C Recommendation, World Wide Web Consortium (October 2009)Google Scholar
  9. 9.
    Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems. In: 2nd International Conference on Broadband Networks, BroadNets 2005, vol. 2, pp. 967–974 (October 2005)Google Scholar
  10. 10.
    O’Hare, G.M.P., Muldoon, C., O’Grady, M.J., Collier, R.E.M.W., Murdoch, O., Carr, D.: Sensor web interaction. International Journal on Artificial Intelligence Tools 21(2), 1240006 (2012)CrossRefGoogle Scholar
  11. 11.
    Togias, K., Goumopoulos, C., Kameas, A.: Ontology-based representation of upnp devices and services for dynamic context-aware ubiquitous computing applications. In: International Conference on Communication Theory, Reliability, and Quality of Service, pp. 220–225 (2010)Google Scholar
  12. 12.
    Tran, K.-N., Compton, M., Wu, J., Gore, R.: Short paper: Semantic sensor composition. In: Proceedings of the 3rd International Workshop on Semantic Sensor Networks (2010)Google Scholar
  13. 13.
    Tsarkov, D., Sattler, U., Stevens, R.: A solution for the man-man problem in the family history knowledge base. In: Hoekstra, R., Patel-Schneider, P.F. (eds.) OWLED. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)Google Scholar
  14. 14.
    Tynan, R., Muldoon, C., O’Hare, G.M.P., O’Grady, M.J.: Coordinated intelligent power management and the heterogeneous sensing coverage problem. Comput. J. 54(3), 490–502 (2011)CrossRefGoogle Scholar
  15. 15.
    Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: A framework for declarative queries and automatic data interpretation. Technical report (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christopher J. Matheus
    • 1
  • Aidan Boran
    • 1
  • Dominic Carr
    • 2
  • Rem Collier
    • 2
  • Barnard Kroon
    • 2
  • Olga Murdoch
    • 2
  • Gregory M. P. O’Hare
    • 2
  • Michael O’Grady
    • 2
  1. 1.Bell LabsBlanchardstownIreland
  2. 2.CLARITY: Centre for Sensor Web Technologies, School of Computer Science & InformaticsUniversity College DublinDublinIreland

Personalised recommendations