Multi-Agent Liquidity Risk Management in an Interbank Net Settlement System

  • Badiâa Hedjazi
  • Mohamed Ahmed-Nacer
  • Samir Aknine
  • Karima Benatchba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7669)


A net settlement system is a payment system between banks, where a large number of transactions are accumulated, usually waiting until the end of each day to be settled through payment instruments like: wire transfers, direct debits, cheques, .... These systems also provide clearing functions to reduce interbank payments but are sometimes exposed to liquidity risks. Monitoring, and optimizing the interbank exchanges through suitable tools is useful for the proper functioning of these systems. The goal is to add to these systems an intelligent software layer integrated with the existing system for the improvement of transactions processing and consequently avoid deadlock situations, deficiencies and improve system efficiency. We model and develop by multi-agent an intelligent tracking system of the interbank exchanged transactions to optimize payments settlement and minimize liquidity risks.


payment system net settlement system multi-agent system liquidity risk classifier system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taibi, A.: BDL Système de télécompensation, rapport de banque de la BDL (Mai 2006) Google Scholar
  2. 2.
    Banque de France, Revue de la stabilité financière (3) (Novembre 2003) Google Scholar
  3. 3.
    Atos Euronext/Diamis, Rapport de Conception. Principes Fonctionnels pour la mise en œuvre dansle système d’information, Groupe Atos Origin. Version 2.0. 18. (Juin 2004) Google Scholar
  4. 4.
    Güntzer, M., Jungnickel, D., Leclerc, M.: Efficient algorithms for the clearing of interbank payments. European Journal of Operational Research 106, 212–219 (1998)CrossRefGoogle Scholar
  5. 5.
    Renault, F., Pecceu, J.-B.: From PNS to TARGET2: the cost of FIFO in RTGS payment system. In: Leinonen, H. (ed.) Simulation Studies of Liquidity Needs, Risks and Efficiency in Payment Networks. Proceedings from the Bank of Finland Payment and Settlement System Seminars 2005–2006, 320 p. (2006) ISBN 978-952-462-360-5Google Scholar
  6. 6.
    Beyeler, W., Bech, M., Glass, R., Soramäki, K.: Congestion and Cascades in Payment Systems. Physica A: Statistical Mechanics and its Applications 384(2), 693–718 (2007)CrossRefGoogle Scholar
  7. 7.
    Galbiati, M., Soramaki, K.: An agent-based model of payment systems. Journal of Economic Dynamics and Control 35(6), 859–875 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Livolant, E.: Apprentissage Multi-Agents par Systèmes de Classeurs, Université de Caen, Laboratoire GREYC, DEA Intelligence Artificielle et Algorithmique (Septembre 2003)Google Scholar
  9. 9.
    Holland, J.H.: Genetic algorithms and classifier systems: Foundations and future directions. In: Refenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, pp. 82–89. Lawrence Erlbaum Associates, Hillsdale (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Badiâa Hedjazi
    • 1
  • Mohamed Ahmed-Nacer
    • 2
  • Samir Aknine
    • 3
  • Karima Benatchba
    • 4
  1. 1.Information Systems DivisionCERIST Research CenterAknounAlgeria
  2. 2.Information Systems LaboratoryUSTHB UniversityBab EzzouarAlgeria
  3. 3.LIRIS UMR 5205INSA de LyonLIRIS, Université Claude Bernard LyonVilleurbanne CedexFrance
  4. 4.ESI, National High School of Computer ScienceEl-HarrachAlgeria

Personalised recommendations