Paths and Shortcuts in an Event-Oriented Ontology

  • Mark Fichtner
  • Vincent Ribaud
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 343)

Abstract

The CIDOC CRM is an event-oriented ontology used in cultural heritage documentation. Events are temporal entities that are used as hooks for relating persistent entities. However end-users are relating persistent entities in a direct manner (e.g. J.R.R. Tolkien wrote Bilbo the Hobbit) and skip the path through a temporal entity. Fauconnier and Turner suggest that human conscious thinking tends to compress complex paths into simpler relationships, despite still knowing subconsciously about the complete paths. This paper presents two prototypical approaches yielding compression and decompression to the end-user, shortcuts implementation in Semantic Media Wiki and ontology path features in the WissKI system. Lessons learned yield research perspectives about identification, names, end-user usability, and event pattern heuristics.

Keywords

CIDOC CRM semantic association end-user representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.: Context-aware semantic association ranking. In: Proc. of 1st Int. WS. on Semantic Web and Databases, pp. 33–50 (2003)Google Scholar
  2. 2.
    Anyanwu, K., Sheth, A.: The ρ operator: Discovering and ranking associations on the semantic web. SIGMOD Record 31, 42–47 (2002)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Doerr, M., Kritsotaki, A.: Documenting Events in Metadata. In: Proc. of 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, pp. 1–5 (2006)Google Scholar
  5. 5.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2002)Google Scholar
  6. 6.
    Häyrinen, A.: Towards Semantic Modelling of Cultural Historical Data. In: Proc. of 12th Int. Conf. Information Modelling and Knowledge Bases, pp. 312–320 (2011)Google Scholar
  7. 7.
    Hohmann, G., Schiemann, B.: An ontology-based communication system for cultural heritage: Approach and progress of the WissKI project. In: Proc. of Scientific Computing & Cultural Heritage (2009)Google Scholar
  8. 8.
    Jämsen, J., Niemi, T., Järvelin, K.: Derived types in semantic association discovery. Journal of Intelligent Information Systems 35(2), 213–244 (2010)CrossRefGoogle Scholar
  9. 9.
    Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic Wikipedia. Journal of Web Semantics 5, 251–261 (2007)CrossRefGoogle Scholar
  10. 10.
    Masolo, C., et al.: WonderWeb Deliverable D17. The WonderWeb Library of Foundational Ontologies and the DOLCE ontology (2002) Google Scholar
  11. 11.
    Millard, I., Jaffri, A., Glaser, H., Rodriguez-Castro, B.: Using a Semantic MediaWiki to Interact with a Knowledge Based Infrastructure. In: Proc. of 15th Int. Conf. on Knowledge Engineering and Knowledge Management (2006)Google Scholar
  12. 12.
    Scherp, A., Frantz, T., Saathoff, C., Staab, S.: A core ontology on events for representing occurrences in the real world. Multimed. Tools Appl. 58, 293–331 (2012)CrossRefGoogle Scholar
  13. 13.
    Tolkien, J.R.R.: The Lord of the Rings - The Fellowship of the Ring. George Allen & Unwin (1954)Google Scholar
  14. 14.
    Tzompanaki, K., Doerr, M.: Fundamental Categories and Relationships for intuitive querying CIDOC-CRM based repositories. ICS-FORTH/TR-429 (2012) Google Scholar
  15. 15.
    Witte, R., Gitzinger, T., Kappler, T., Krestel, R.: A Semantic Wiki Approach to Cultural Heritage Data Management. Language Technology for Cultural Heritage Data (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark Fichtner
    • 1
  • Vincent Ribaud
    • 2
  1. 1.Zoologisches Forschungsmuseum Alexander KoenigBonnGermany
  2. 2.Lab-STICC MOCSUniversité de Bretagne OccidentaleBrestFrance

Personalised recommendations