A Cost Analysis of Cloud Computing for Education

  • Fernando Koch
  • Marcos D. Assunção
  • Marco A. S. Netto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7714)

Abstract

Educational institutions have become highly dependent on information technology to support the delivery of personalised material, digital content, interactive classes, and others. These institutions are progressively transitioning into Cloud Computing technology to shift costs from locally-hosted services to a “renting model” often with higher availability, elasticity, and resilience. However, in order to properly explore the cost benefits of the pay-as-you-go business model, there is a need for processes for resource allocation, monitoring, and self-adjustment that take advantage of characteristics of the application domain. In this paper we perform a numerical analysis of three resource allocation methods that work by (i) pre-allocating resource capacity to handle peak demands; (ii) reactively allocating resource capacity based on current demand; and (iii) proactively allocating and releasing resources prior to load increases or decreases by exploring characteristics of the educational domain and more precise information about expected demand. The results show that there is an opportunity for both educational institutions and Cloud providers to collaborate in order to enhance the quality of services and reduce costs.

Keywords

Cloud computing education systems digital content resource allocation cost analysis quality of service 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud infrastructures. In: Proceedings of the IEEE Network Operations and Management Symposium, NOMS 2012 (2012)Google Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G.: Application-level scheduling on distributed heterogeneous networks. In: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing. IEEE (1996)Google Scholar
  4. 4.
    Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S.M., Hayes, J., Obertelli, G., Schopf, J.M., Shao, G., Smallen, S., Spring, N.T., Su, A., Zagorodnov, D.: Adaptive computing on the grid using apples. IEEE Transactions on Parallel Distributed Systems 14(4), 369–382 (2003)CrossRefGoogle Scholar
  5. 5.
    Bodenstein, C., Hedwig, M., Neumann, D.: Strategic decision support for smart-leasing infrastructure-as-a-service. In: Proceedings of the International Conference on Information Systems, ICIS 2011 (2011)Google Scholar
  6. 6.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer System 25(6), 599–616 (2009)CrossRefGoogle Scholar
  7. 7.
    Chandra, A., Gong, W., Shenoy, P.D.: Dynamic Resource Allocation for Shared Data Centers Using Online Measurements. In: Jeffay, K., Stoica, I., Wehrle, K. (eds.) IWQoS 2003. LNCS, vol. 2707, pp. 381–400. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., Rose, C.A.F.D.: Towards autonomic detection of sla violations in cloud infrastructures. Future Generation Computer Systems 28(7), 1017–1029 (2012)CrossRefGoogle Scholar
  9. 9.
    Ganapathi, A., Chen, Y., Fox, A., Katz, R.H., Patterson, D.A.: Statistics-driven workload modeling for the cloud. In: Proceedings of the 26th International Conference on Data Engineering, ICDE 2010 (2010)Google Scholar
  10. 10.
    Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Capacity management and demand prediction for next generation data centers. In: Proceedings of the IEEE International Conference on Web Services, ICWS 2007 (2007)Google Scholar
  11. 11.
    Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud systems. In: Proceedings of the 6th International Conference on Network and Service Management, CNSM 2010 (2010)Google Scholar
  12. 12.
    Greengard, S.: Cloud computing and developing nations. Communications of the ACM 53(5), 18–20 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Joung, H.Y., Do, E.Y.L.: Tactile hand gesture recognition through haptic feedback for affective online communication. In: Proceedings of International Conference on HCI (2011)Google Scholar
  14. 14.
    Kashef, M.M., Altmann, J.: A Cost Model for Hybrid Clouds. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 46–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Katz, R.: The tower and the cloud: Higher education in the age of cloud computing. Educause (2010)Google Scholar
  16. 16.
    Katzan Jr., H., et al.: The education value of cloud computing. Contemporary Issues in Education Research (CIER) 3(7), 37–42 (2010)Google Scholar
  17. 17.
    Kshetri, N.: Cloud computing in developing economies. Computer 43(10), 47–55 (2010)CrossRefGoogle Scholar
  18. 18.
    Li, W., Tordsson, J., Elmroth, E.: Virtual Machine Placement for Predictable and Time-Constrained Peak Loads. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 120–134. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    MacLean, K.E.: Designing with haptic feedback. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000 (2000)Google Scholar
  20. 20.
    Mircea, M., Andreescu, A.: Using cloud computing in higher education: A strategy to improve agility in the current financial crisis. Communications of the IBIMA 53(5) (2010)Google Scholar
  21. 21.
    Netto, M.A.S., Vecchiola, C., Kirley, M., Varela, C.A., Buyya, R.: Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications. Journal of Parallel and Distributed Computing 71(10), 1388–1399 (2011)CrossRefGoogle Scholar
  22. 22.
    Petri, I., Rana, O.F., Regzui, Y., Silaghi, G.C.: Risk Assessment in Service Provider Communities. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 135–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Sclater, N.: Cloud computing in education. Iite policy brief, UNESCO Institute for Information Technologies in Education (September 2010)Google Scholar
  24. 24.
    Stefanov, H., Jansen, S., Batenburg, R., van Heusden, E., Khadka, R.: How to Do Successful Chargeback for Cloud Services. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 61–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Sultan, N.: Cloud computing for education: A new dawn? International Journal of Information Management 30(2), 109–116 (2010)CrossRefGoogle Scholar
  26. 26.
    Wheeler, B., Waggener, S.: Above-campus services: shaping the promise of cloud computing for higher education. Educause Review 44(6), 52–67 (2009)Google Scholar
  27. 27.
    Yang, L.T., Ma, X., Mueller, F.: Cross-platform performance prediction of parallel applications using partial execution. In: Proceedings of the ACM/IEEE Conference on High Performance Networking and Computing (SC 2005) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fernando Koch
    • 1
  • Marcos D. Assunção
    • 1
  • Marco A. S. Netto
    • 1
  1. 1.IBM ResearchSao PauloBrazil

Personalised recommendations