Advertisement

Vinter: A Vampire-Based Tool for Interpolation

  • Kryštof Hoder
  • Andreas Holzer
  • Laura Kovács
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7705)

Abstract

This paper describes the Vinter tool for extracting interpolants from proofs and minimising such interpolants using various measures. Vinter takes an input problem written in either SMT-LIB or TPTP syntax, generates so called local proofs and then uses a technique of playing in the grey areas of proofs to find interpolants minimal with respect to various measures. Proofs are found using either Z3 or Vampire, solving pseudo-boolean optimisation is delegated to Yices, while localising proofs and generating minimal interpolants is done by Vampire. We describe the use of Vinter and give experimental results on problems from bounded model checking.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010), www.SMT-LIB.org
  2. 2.
    Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Craig, W.: Three uses of the Herbrand-Gentzen Theorem in Relating Model Theory and Proof Theory. Journal of Symbolic Logic 22(3), 269–285 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination in Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hoder, K., Kovacs, L., Voronkov, A.: Playing in the Grey Area of Proofs. In: Proc. of POPL, pp. 259–272 (2012)Google Scholar
  8. 8.
    Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    McMillan, K.L.: An Interpolating Theorem Prover. Theor. Comput. Sci. 345(1), 101–121 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    McMillan, K.L.: Interpolants from Z3 Proofs. In: Proc. of FMCAD, pp. 19–27 (2011)Google Scholar
  13. 13.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  14. 14.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kryštof Hoder
    • 1
  • Andreas Holzer
    • 2
  • Laura Kovács
    • 2
  • Andrei Voronkov
    • 1
  1. 1.University of ManchesterUK
  2. 2.TU ViennaAustria

Personalised recommendations