Report on the Model Checking Contest at Petri Nets 2011

  • Fabrice Kordon
  • Alban Linard
  • Didier Buchs
  • Maximilien Colange
  • Sami Evangelista
  • Kai Lampka
  • Niels Lohmann
  • Emmanuel Paviot-Adet
  • Yann Thierry-Mieg
  • Harro Wimmel

Abstract

This article presents the results of the Model Checking Contest held within the SUMo 2011 workshop, a satellite event of Petri Nets 2011. This contest aimed at a fair and experimental evaluation of the performances of model checking techniques applied to Petri nets.

The participating tools were compared on several examinations (state space generation, deadlock detection and evaluation of reachability formulæ) run on a set of common models (Place/Transition and Symmetric Petri nets). The collected data gave some hints about the way techniques can scale up depending on both examinations and the characteristics of the models.

This paper also presents the lessons learned from the organizer’s point of view. It discusses the enhancements required for future editions of the Model Checking Contest event at the Petri Nets conference.

Keywords

Petri Nets Model Checking Contest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: ACM Great Lakes Symposium on VLSI, pp. 116–119. ACM (2003)Google Scholar
  2. 2.
    Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987)Google Scholar
  3. 3.
    Buchs, D., Hostettler, S.: Sigma Decision Diagrams. In: Preliminary Proceedings of the 5th International Workshop on Computing with Terms and Graphs, pp. 18–32. No. TR-09-05 in TERMGRAPH workshops, Università di Pisa (2009)Google Scholar
  4. 4.
    Buchs, D., Hostettler, S., Marechal, A., Risoldi, M.: AlPiNA: An Algebraic Petri Net Analyzer. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 349–352. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Burch, J., Clarke, E., Long, D.: Symbolic Model Checking with Partitioned Transition Relations. In: Halaas, A., Denyer, P.B. (eds.) International Conference on Very Large Scale Integration, pp. 49–58. North-Holland, Edinburgh (1991)Google Scholar
  6. 6.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and their symbolic reachability graph. In: Jensen, K., Rozenberg, G. (eds.) Proceedings of the 11th International Conference on Application and Theory of Petri Nets, ICATPN 1990. Reprinted in High-Level Petri Nets, Theory and Application. Springer (1991)Google Scholar
  7. 7.
    Chiola, G., Franceschinis, G.: Colored GSPN Models and Automatic Symmetry Detection. In: The Proceedings of the Third International Workshop on Petri Nets and Performance Models, PNPM 1989, pp. 50–60. IEEE Computer Society (1989)Google Scholar
  8. 8.
    Ciardo, G.: Advances in compositional approaches based on kronecker algebra: Application to the study of manufacturing systems. In: 3rd International Workshop on Performability Modeling of Computer and Communication Systems, pp. 61–65 (1996)Google Scholar
  9. 9.
    Ciardo, G., Trivedi, K.: A decomposition approach for stochastic reward net models. Perf. Eval. 18, 37–59 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.: Efficient Symbolic State-Space Construction for Asynchronous Systems. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 103–122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Crocodile: A Symbolic/Symbolic Tool for the Analysis of Symmetric Nets with Bag. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 338–347. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)MATHCrossRefGoogle Scholar
  15. 15.
    Esparza, J., Melzer, S.: Verification of safety properties using integer programming: Beyond the state equation. Formal Methods in System Design 16, 159–189 (2000)CrossRefGoogle Scholar
  16. 16.
    Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Finnemann, J., Nielsen, T., Kærlund, L.: Petri nets with discrete variables. Tech. rep. (2011), http://jopsen.dk/downloads/PetriNetsWithDiscreteVariables.pdf
  18. 18.
    Haddad, S., Kordon, F., Petrucci, L., Pradat-Peyre, J.F., Trèves, N.: Efficient State-Based Analysis by Introducing Bags in Petri Net Color Domains. In: 28th American Control Conference, ACC 2009, pp. 5018–5025. Omnipress IEEE, St-Louis (2009)CrossRefGoogle Scholar
  19. 19.
    Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundamenta Informaticae 94(3-4), 413–437 (2009)MathSciNetMATHGoogle Scholar
  20. 20.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S.: Computing a Hierarchical Static Order for Decision Diagram-Based Representation from P/T Nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 121–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Hostettler, S., Linard, A., Marechal, A., Risoldi, M.: Improving the significance of benchmarks for petri nets model checkers. In: 1st International Workshop on Scalable and Usable Model Checking for Petri Nets and Other Models of Concurrency, pp. 97–111 (2010)Google Scholar
  23. 23.
    Hostettler, S., Marechal, A., Linard, A., Risoldi, M., Buchs, D.: High-Level Petri Net Model Checking with AlPiNA. Fundamenta Informaticae 113 (2011)Google Scholar
  24. 24.
    Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E., Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B., Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J., Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition: Experience Report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 154–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Kordon, F., Linard, A., Paviot-Adet, E.: Optimized Colored Nets Unfolding. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 339–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided Stubborn Set Methods for State Properties. Formal Methods in System Design 29(3), 215–251 (2006)MATHCrossRefGoogle Scholar
  27. 27.
    Kristensen, L.M., Valmari, A.: Improved Question-Guided Stubborn Set Methods for State Properties. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 282–302. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Lampka, K.: A new algorithm for partitioned symbolic reachability analysis. In: Workshop on Reachability Problems. ENTCS, vol. 223 (2008)Google Scholar
  29. 29.
    Lampka, K., Siegle, M.: Activity-Local State Graph Generation for High-Level Stochastic Models. In: Measuring, Modelling, and Evaluation of Systems 2006, pp. 245–264 (2006)Google Scholar
  30. 30.
    Lampka, K.: A new algorithm for partitioned symbolic reachability analysis. Electron. Notes Theor. Comput. Sci. 223, 137–151 (2008)CrossRefGoogle Scholar
  31. 31.
    Lampka, K., Siegle, M., Ossowski, J., Baier, C.: Partially-shared zero-suppressed multi-terminal bdds: concept, algorithms and applications. Formal Methods in System Design 36, 198–222 (2010)MATHCrossRefGoogle Scholar
  32. 32.
    Linard, A., Paviot-Adet, E., Kordon, F., Buchs, D., Charron, S.: polyDD: Towards a Framework Generalizing Decision Diagrams. In: 10th International Conference on Application of Concurrency to System Design, ACSD 2010, pp. 124–133. IEEE Computer Society, Braga (2010)CrossRefGoogle Scholar
  33. 33.
    Minato, S.: Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In: Proc. of the 30th Design Automation Conference, DAC, pp. 272–277. ACM/IEEE, Dallas (Texas), USA (1993)Google Scholar
  34. 34.
    Pastor, E., Roig, O., Cortadella, J.: Symbolic Petri Net Analysis using Boolean Manipulation, Technical Report of Departament Arquitectura de Computadors (UPC) DAC/UPC Report No. 97/8 (1997)Google Scholar
  35. 35.
    Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116 (1981)MATHCrossRefGoogle Scholar
  36. 36.
    Schmidt, K.: Narrowing petri net state spaces using the state equation. Fundamenta Informaticae 47(3-4), 325–335 (2001)MathSciNetMATHGoogle Scholar
  37. 37.
    Schmidt, K.: Stubborn Sets for Standard Properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  38. 38.
    Schmidt, K.: Using Petri Net Invariants in State Space Construction. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 473–488. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  39. 39.
    Thierry-Mieg, Y., Ilié, J.-M., Poitrenaud, D.: A Symbolic Symbolic State Space Representation. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 276–291. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Set Decision Diagrams and Regular Models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Wikipedia: Dining philosophers problem (2011), http://en.wikipedia.org/wiki/Dining_philosophers_problem
  42. 42.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri Net State Equation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    Wolf, K.: Generating Petri Net State Spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabrice Kordon
    • 1
  • Alban Linard
    • 2
  • Didier Buchs
    • 2
  • Maximilien Colange
    • 1
  • Sami Evangelista
    • 3
  • Kai Lampka
    • 4
  • Niels Lohmann
    • 5
  • Emmanuel Paviot-Adet
    • 1
  • Yann Thierry-Mieg
    • 1
  • Harro Wimmel
    • 5
  1. 1.LIP6, CNRS UMR 7606Université P. & M. Curie - Paris 6Paris Cedex 05France
  2. 2.Centre Universitaire d’Informatique, Université de GenèveCarougeSwitzerland
  3. 3.LIPN, CNRS UMR 7030Université Paris 13VilletaneuseFrance
  4. 4.Department of Information TechnologyUppsala UniversitySweden
  5. 5.Universität RostockRostockGermany

Personalised recommendations