Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing

  • Songyun Duan
  • Achille Fokoue
  • Oktie Hassanzadeh
  • Anastasios Kementsietsidis
  • Kavitha Srinivas
  • Michael J. Ward
Conference paper

DOI: 10.1007/978-3-642-35176-1_4

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)
Cite this paper as:
Duan S., Fokoue A., Hassanzadeh O., Kementsietsidis A., Srinivas K., Ward M.J. (2012) Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing. In: Cudré-Mauroux P. et al. (eds) The Semantic Web – ISWC 2012. ISWC 2012. Lecture Notes in Computer Science, vol 7649. Springer, Berlin, Heidelberg

Abstract

In this paper, we describe a mechanism for ontology alignment using instance based matching of types (or classes). Instance-based matching is known to be a useful technique for matching ontologies that have different names and different structures. A key problem in instance matching of types, however, is scaling the matching algorithm to (a) handle types with a large number of instances, and (b) efficiently match a large number of type pairs. We propose the use of state-of-the art locality-sensitive hashing (LSH) techniques to vastly improve the scalability of instance matching across multiple types. We show the feasibility of our approach with DBpedia and Freebase, two different type systems with hundreds and thousands of types, respectively. We describe how these techniques can be used to estimate containment or equivalence relations between two type systems, and we compare two different LSH techniques for computing instance similarity.

Keywords

Ontology Alignment Schema Matching Linked Data Semantic Web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Songyun Duan
    • 1
  • Achille Fokoue
    • 1
  • Oktie Hassanzadeh
    • 1
  • Anastasios Kementsietsidis
    • 1
  • Kavitha Srinivas
    • 1
  • Michael J. Ward
    • 1
  1. 1.IBM T.J. Watson ResearchHawthorneUSA

Personalised recommendations