Advertisement

On the Diversity and Availability of Temporal Information in Linked Open Data

  • Anisa Rula
  • Matteo Palmonari
  • Andreas Harth
  • Steffen Stadtmüller
  • Andrea Maurino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)

Abstract

An increasing amount of data is published and consumed on the Web according to the Linked Data paradigm. In consideration of both publishers and consumers, the temporal dimension of data is important. In this paper we investigate the characterisation and availability of temporal information in Linked Data at large scale. Based on an abstract definition of temporal information we conduct experiments to evaluate the availability of such information using the data from the 2011 Billion Triple Challenge (BTC) dataset. Focusing in particular on the representation of temporal meta-information, i.e., temporal information associated with RDF statements and graphs, we investigate the approaches proposed in the literature, performing both a quantitative and a qualitative analysis and proposing guidelines for data consumers and publishers. Our experiments show that the amount of temporal information available in the LOD cloud is still very small; several different models have been used on different datasets, with a prevalence of approaches based on the annotation of RDF documents.

Keywords

temporal information temporal annotation linked data 

References

  1. 1.
    Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal Information Retrieval: Challenges and Opportunities. In: 1st Temporal Web Analytics Workshop at WWW, pp. 1–8 (2011)Google Scholar
  2. 2.
    Bartlett, J., Kotrlik, I., Higgins, C.: Organizational Research: Determining Appropriate Sample Size in Survey Research. Information Technology, Learning, and Performance Journal, 43 (2001)Google Scholar
  3. 3.
    Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web. linkeddata.org Tutorial (2008)Google Scholar
  4. 4.
    Cho, J., Garcia-Molina, H.: The Evolution of the Web and Implications for an Incremental Crawler. In: The 26th VLDB, pp. 200–209 (2000)Google Scholar
  5. 5.
    Correndo, G., Salvadores, M., Millard, I., Shadbolt, N.: Linked Timelines: Temporal Representation and Management in Linked Data. In: 1st International Workshop on Consuming Linked Data at ISWC (2010)Google Scholar
  6. 6.
    Crocker, D.H.: Standard for the Format of ARPA Internet Text Messages. RFC 822 (1982)Google Scholar
  7. 7.
    De Sompel, H.V., Sanderson, R., Nelson, M.L., Balakireva, L., Shankar, H., Ainsworth, S.: An HTTP-Based Versioning Mechanism for Linked Data. In: 3rd Linked Data on the Web Workshop at WWW (2010)Google Scholar
  8. 8.
    Fallside, D.C., Walmsley, P.: XML Schema Part 0: Primer Edition, 2nd edn. World Wide Web Consortium (2004)Google Scholar
  9. 9.
    Grandi, F.: Introducing an annotated bibliography on temporal and evolution aspects in the World Wide Web. SIGMOD Record, 84–86 (2004)Google Scholar
  10. 10.
    Gutierrez, C., Hurtado, C., Mendelzon, A.O., Pérez, J.: Foundations of Semantic Web Databases, pp. 520–541 (2011)Google Scholar
  11. 11.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Temporal RDF. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Hobbs, J., Pan, F.: An Ontology of Time for the Semantic Web. Processings of the ACM Transactions on Asian Language Information, 66–85 (2004)Google Scholar
  13. 13.
    Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic Web. In: 3rd Linked Data on the Web Workshop at WWW (2010)Google Scholar
  14. 14.
    Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An Empirical Survey of Linked Data Conformance. Web Semantics (2012)Google Scholar
  15. 15.
    Horton, M.R.: Standard for Interchange of USENET Messages. RFC 850, Internet Engineering Task Force (1983)Google Scholar
  16. 16.
    ISO 8601. Data Elements and Interchange Formats-Information Interchange-Representation of Dates and Times (2004)Google Scholar
  17. 17.
    Käfer, T., Umbrich, J., Hogan, A., Polleres, A.: Towards a Dynamic Linked Data Observatory. In: 5th Linked Data on the Web Workshop at WWW (2012)Google Scholar
  18. 18.
    Kline, N.: An Update of the Temporal Database Bibliography. SIGMOD Record, 66–80 (1993)Google Scholar
  19. 19.
    Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Lee, H.T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 Billion Pages and Beyond. In: The 17th WWW, pp. 427–436 (2008)Google Scholar
  21. 21.
    Li, P., Dong, X.L., Maurino, A., Srivastava, D.: Linking temporal records. The VLDB Endowment (2011)Google Scholar
  22. 22.
    Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: Linked Data Quality Assessment and Fusion. In: 2nd International Workshop on Linked Web Data Management at EDBT (2012)Google Scholar
  23. 23.
    Panziera, L., Comerio, M., Palmonari, M., De Paoli, F., Batini, C.: Quality-Driven Extraction, Fusion and Matchmaking of Semantic Web API Descriptions. J. Web Eng. 11(3), 247–268 (2012)Google Scholar
  24. 24.
    Popitsch, N., Haslhofer, B.: DSNotify - A Solution for Event Detection and Link Maintenance in Dynamic Datasets. Web Semantics, 266–283 (2011)Google Scholar
  25. 25.
    Rodrıguez, A., McGrath, R., Liu, Y., Myers, J.: Semantic Management of Streaming Data. In: 2nd International Workshop on Semantic Sensor Networks at ISWC (2009)Google Scholar
  26. 26.
    Rula, A., Palmonari, M., Maurino, A.: Capturing the Age of Linked Open Data: Towards a Dataset-independent Framework. In: 1st International Workshop on Data Quality Management and Semantic Technologies at IEEE ICSC (2012)Google Scholar
  27. 27.
    Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Computing 12(4), 78–83 (2008)CrossRefGoogle Scholar
  28. 28.
    Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards Dataset Dynamics: Change Frequency of Linked Open Data Sources. In: 3rd Linked Data on the Web Workshop at WWW (2010)Google Scholar
  30. 30.
    Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: Harvesting, Querying, and Visualizing Temporal Knowledge from Wikipedia. In: The 13th EDBT, pp. 697–700 (2010)Google Scholar
  31. 31.
    Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. In: Frontiers in Artificial Intelligence and Applications, p. 226 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anisa Rula
    • 1
  • Matteo Palmonari
    • 1
  • Andreas Harth
    • 2
  • Steffen Stadtmüller
    • 2
  • Andrea Maurino
    • 1
  1. 1.University of Milano-BicoccaItaly
  2. 2.Karlsruhe Institute of Technology (KIT)Germany

Personalised recommendations