Advertisement

Large-Scale Learning of Relation-Extraction Rules with Distant Supervision from the Web

  • Sebastian Krause
  • Hong Li
  • Hans Uszkoreit
  • Feiyu Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)

Abstract

We present a large-scale relation extraction (RE) system which learns grammar-based RE rules from the Web by utilizing large numbers of relation instances as seed. Our goal is to obtain rule sets large enough to cover the actual range of linguistic variation, thus tackling the long-tail problem of real-world applications. A variant of distant supervision learns several relations in parallel, enabling a new method of rule filtering. The system detects both binary and n-ary relations. We target 39 relations from Freebase, for which 3M sentences extracted from 20M web pages serve as the basis for learning an average of 40K distinctive rules per relation. Employing an efficient dependency parser, the average run time for each relation is only 19 hours. We compare these rules with ones learned from local corpora of different sizes and demonstrate that the Web is indeed needed for a good coverage of linguistic variation.

Keywords

information extraction IE relation extraction RE rule based RE web scale IE distant supervision Freebase 

References

  1. 1.
    Agichtein, E.: Confidence estimation methods for partially supervised information extraction. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM 2006. SIAM (2006)Google Scholar
  2. 2.
    Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text collections. In: Fifth ACM Conference on Digital Libraries, pp. 85–94. ACM (2000)Google Scholar
  3. 3.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the Web. In: Veloso, M.M. (ed.) IJCAI 2007, pp. 2670–2676 (2007)Google Scholar
  4. 4.
    Berners-Lee, T.: Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor. HarperCollins, New York (1999)Google Scholar
  5. 5.
    Brin, S.: Extracting Patterns and Relations from the World Wide Web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Carlson, A., Betteridge, J., Hruschka Jr., E.R., Mitchell, T.M.: Coupling semi-supervised learning of categories and relations. In: NAACL HLT 2009 Workshop on Semi-supervised Learning for Natural Language Processing, pp. 1–9 (2009)Google Scholar
  7. 7.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the Web: An experimental study. Artif. Intell. 165, 91–134 (2005)CrossRefGoogle Scholar
  8. 8.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: ACL 2005 (2005)Google Scholar
  9. 9.
    Grishman, R., Sundheim, B.: Message understanding conference - 6: A brief history. In: COLING 1996, pp. 466–471 (1996)Google Scholar
  10. 10.
    Hoffmann, R., Zhang, C., Weld, D.S.: Learning 5000 relational extractors. In: ACL 2010, pp. 286–295 (2010)Google Scholar
  11. 11.
    Hovy, E.H., Kozareva, Z., Riloff, E.: Toward completeness in concept extraction and classification. In: EMNLP 2009, pp. 948–957 (2009)Google Scholar
  12. 12.
    Kozareva, Z., Hovy, E.H.: A semi-supervised method to learn and construct taxonomies using the Web. In: EMNLP 2010, pp. 1110–1118 (2010)Google Scholar
  13. 13.
    Kozareva, Z., Riloff, E., Hovy, E.H.: Semantic class learning from the Web with hyponym pattern linkage graphs. In: ACL 2008, pp. 1048–1056 (2008)Google Scholar
  14. 14.
    McDonald, R., Pereira, F., Kulick, S., Winters, S., Jin, Y., White, P.: Simple algorithms for complex relation extraction with applications to biomedical IE. In: ACL 2005 (2005)Google Scholar
  15. 15.
    Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Su, K.Y., Su, J., Wiebe, J. (eds.) ACL/IJCNLP 2009, pp. 1003–1011 (2009)Google Scholar
  16. 16.
    Nguyen, T.V.T., Moschitti, A.: End-to-end relation extraction using distant supervision from external semantic repositories. In: ACL 2011, Short Papers, pp. 277–282 (2011)Google Scholar
  17. 17.
    Pantel, P., Ravichandran, D., Hovy, E.: Towards terascale semantic acquisition. In: COLING 2004 (2004)Google Scholar
  18. 18.
    Parker, R., et al.: English Gigaword Fifth Edition. Linguistic Data Consortium, Philadelphia (2011)Google Scholar
  19. 19.
    Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Names and similarities on the web: Fact extraction in the fast lane. In: ACL/COLING 2006 (2006)Google Scholar
  20. 20.
    Ravichandran, D., Hovy, E.H.: Learning surface text patterns for a question answering system. In: ACL 2002, pp. 41–47 (2002)Google Scholar
  21. 21.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A large ontology from Wikipedia and WordNet. J. Web. Semant. 6, 203–217 (2008)CrossRefGoogle Scholar
  22. 22.
    Surdeanu, M., Gupta, S., Bauer, J., McClosky, D., Chang, A.X., Spitkovsky, V.I., Manning, C.D.: Stanford’s distantly-supervised slot-filling system. In: Proceedings of the Fourth Text Analysis Conference (2011)Google Scholar
  23. 23.
    Uszkoreit, H.: Learning Relation Extraction Grammars with Minimal Human Intervention: Strategy, Results, Insights and Plans. In: Gelbukh, A. (ed.) CICLing 2011, Part II. LNCS, vol. 6609, pp. 106–126. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Volokh, A.: MDParser. Tech. rep., DFKI GmbH (2010)Google Scholar
  25. 25.
    Volokh, A., Neumann, G.: Comparing the benefit of different dependency parsers for textual entailment using syntactic constraints only. In: SemEval-2 Evaluation Exercises on Semantic Evaluation PETE (2010)Google Scholar
  26. 26.
    Walker, C., Strassel, S., Medero, J., Maeda, K.: ACE 2005 multilingual training corpus. Linguistic Data Consortium, Philadelphia (2006)Google Scholar
  27. 27.
    Weld, D.S., Hoffmann, R., Wu, F.: Using Wikipedia to bootstrap open information extraction. SIGMOD Record 37, 62–68 (2008)CrossRefGoogle Scholar
  28. 28.
    Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from Wikipedia: moving down the long tail. In: KDD 2009, pp. 731–739 (2008)Google Scholar
  29. 29.
    Xu, F.: Bootstrapping Relation Extraction from Semantic Seeds. Ph.D. thesis, Saarland University (2007)Google Scholar
  30. 30.
    Xu, F., Uszkoreit, H., Krause, S., Li, H.: Boosting relation extraction with limited closed-world knowledge. In: COLING 2010, Posters, pp. 1354–1362 (2010)Google Scholar
  31. 31.
    Xu, F., Uszkoreit, H., Li, H.: A seed-driven bottom-up machine learning framework for extracting relations of various complexity. In: ACL 2007 (2007)Google Scholar
  32. 32.
    Xu, W., Grishman, R., Zhao, L.: Passage retrieval for information extraction using distant supervision. In: IJCNLP 2011, pp. 1046–1054 (2011)Google Scholar
  33. 33.
    Yangarber, R.: Counter-training in discovery of semantic patterns. In: ACL 2003. pp. 343–350 (2003)Google Scholar
  34. 34.
    Yangarber, R., Grishman, R., Tapanainen, P.: Automatic acquisition of domain knowledge for information extraction. In: COLING 2000, pp. 940–946 (2000)Google Scholar
  35. 35.
    Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., Soderland, S.: TextRunner: open information extraction on the Web. In: HLT-NAACL 2007, Demonstrations, pp. 25–26 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Krause
    • 1
  • Hong Li
    • 1
  • Hans Uszkoreit
    • 1
  • Feiyu Xu
    • 1
  1. 1.Language Technology LabDFKIBerlinGermany

Personalised recommendations