An Efficient Bit Vector Approach to Semantics-Based Machine Perception in Resource-Constrained Devices

  • Cory Henson
  • Krishnaprasad Thirunarayan
  • Amit Sheth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)

Abstract

The primary challenge of machine perception is to define efficient computational methods to derive high-level knowledge from low-level sensor observation data. Emerging solutions are using ontologies for expressive representation of concepts in the domain of sensing and perception, which enable advanced integration and interpretation of heterogeneous sensor data. The computational complexity of OWL, however, seriously limits its applicability and use within resource-constrained environments, such as mobile devices. To overcome this issue, we employ OWL to formally define the inference tasks needed for machine perception – explanation and discrimination – and then provide efficient algorithms for these tasks, using bit-vector encodings and operations. The applicability of our approach to machine perception is evaluated on a smart-phone mobile device, demonstrating dramatic improvements in both efficiency and scale.

Keywords

Machine Perception Semantic Sensor Web Sensor Data Mobile Device Resource-Constrained Environments 

References

  1. 1.
    Neisser, U.: Cognition and Reality. Psychology, p. 218. W.H. Freeman and Company, San Francisco (1976)Google Scholar
  2. 2.
    Gregory, R.L.: Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of London 352(1358), 1121–1127 (1997)CrossRefGoogle Scholar
  3. 3.
    W3C Semantic Sensor Network Incubator Group (SSN-XG) Charter, http://www.w3.org/2005/Incubator/ssn/charter
  4. 4.
    Lefort, L., et al.: Semantic Sensor Network XG Final Report. W3C Incubator Group Report (June 28, 2011), www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628
  5. 5.
    Compton, M., et al.: The SSN Ontology of the W3C Semantic Sensor Network Incubator Group. Journal of Web Semantics (in press, 2012) Google Scholar
  6. 6.
    Gray, A.J.G., García-Castro, R., Kyzirakos, K., Karpathiotakis, M., Calbimonte, J.-P., Page, K., Sadler, J., Frazer, A., Galpin, I., Fernandes, A.A.A., Paton, N.W., Corcho, O., Koubarakis, M., De Roure, D., Martinez, K., Gómez-Pérez, A.: A Semantically Enabled Service Architecture for Mashups over Streaming and Stored Data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 300–314. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Semantic Sensor Data Search in a Large-Scale Federated Sensor Network. In: 4th Intl. Workshop on Semantic Sensor Networks, Bonn, Germany, October 23-27 (2011)Google Scholar
  8. 8.
    Pfisterer, D., et al.: SPITFIRE: toward a semantic web of things. IEEE Communications Magazine 49(11), 40–48 (2011)CrossRefGoogle Scholar
  9. 9.
    Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Computing 12(4), 78–83 (2008)CrossRefGoogle Scholar
  10. 10.
    Ali, S., Kiefer, S.: μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices. In: Abdennadher, N., Petcu, D. (eds.) GPC 2009. LNCS, vol. 5529, pp. 305–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Shanahan, M.P.: Perception as Abduction: Turning Sensor Data into Meaningful Representation. Cognitive Science 29, 103–134 (2005)CrossRefGoogle Scholar
  12. 12.
    Reggia, J.A., Peng, Y.: Modeling Diagnostic Reasoning: A Summary of Parsimonious Covering Theory. Computer Methods and Programs Biomedicine 25, 125–134 (1987)CrossRefGoogle Scholar
  13. 13.
    Henson, C., Thirunarayan, K., Sheth, A., Hitzler, P.: Representation of Parsimonious Covering Theory in OWL-DL. In: 8th Intl. Workshop on OWL: Experiences and Directions, San Francisco, CA, USA, June 5-6 (2011)Google Scholar
  14. 14.
    Henson, C., Sheth, A., Thirunarayan, K.: Semantic Perception: Converting Sensory Observations to Abstractions. IEEE Internet Computing 16(2), 26–34 (2012)CrossRefGoogle Scholar
  15. 15.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. Ph.D. Thesis, RWTH Aachen, Germany (2001)Google Scholar
  16. 16.
    Bajcsy, R.: Active perception. IEEE 76(8), 996–1005 (1988)CrossRefGoogle Scholar
  17. 17.
    Henson, C., Thirunarayan, K., Sheth, A.: An Ontological Approach to Focusing Attention and Enhancing Machine Perception on the Web. Applied Ontology 6(4), 345–376 (2011)Google Scholar
  18. 18.
    Kuhn, W.: A Functional Ontology of Observation and Measurement. In: Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009. LNCS, vol. 5892, pp. 26–43. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Devaraju, A., Kuhn, W.: A Process-Centric Ontological Approach for Integrating Geo-Sensor Data. In: 6th Intl. Conf. on Formal Ontology in Information Systems, Toronto, Canada, May 11-14 (2010)Google Scholar
  20. 20.
    Keßler, C., Raubal, M., Wosniok, C.: Semantic Rules for Context-Aware Geographical Information Retrieval. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 77–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Scheider, S., Probst, F., Janowicz, K.: Constructing Bodies and their Qualities from Observations. In: 6th Intl. Conf. on Formal Ontology in Information Systems, Toronto, Canada, May 11-14 (2010)Google Scholar
  22. 22.
    Devaraju, A., Kauppinen, T.: Sensors Tell More than They Sense: Modeling and Reasoning about Sensor Observations for Understanding Weather Events. International Journal of Sensors, Wireless Communications and Control, Special Issue on Semantic Sensor Networks 2(1) (2012) ISSN: 2210-3279Google Scholar
  23. 23.
    Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing in Heterogeneous Sensor Networks. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 285–299. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In: Workshop on OWL: Experiences and Directions, Athens, GA, USA, November 10-11 (2006)Google Scholar
  25. 25.
    Peraldi, S.E., Kaya, A., Möller, R.: Formalizing multimedia interpretation based on abduction over description logic aboxes. In: 22nd Intl. Workshop on Description Logics, Oxford, UK, July 27-30 (2009)Google Scholar
  26. 26.
    Binary RDF Representation for Publication and Exchange (HDT). W3C Member Submission (2011), http://www.w3.org/Submission/2011/SUBM-HDT-20110330/
  27. 27.
    Seitz, C., Schönfelder, R.: Rule-Based OWL Reasoning for Specific Embedded Devices. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 237–252. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Preuveneers, D., Berbers, Y.: Encoding Semantic Awareness in Resource-Constrained Devices. IEEE Intelligent Systems 23(2), 26–33 (2008)CrossRefGoogle Scholar
  29. 29.
    Motik, B., Horrocks, I., Kim, S.: Delta-Reasoner: a Semantic Web Reasoner for an Intelligent Mobile Platform. In: 21st International World Wide Web Conference (WWW 2012), Lyon, France, April 16-20 (2012)Google Scholar
  30. 30.
    McGlothlin, J.P., Khan, L.: Materializing and Persisting Inferred and Uncertain Knowledge in RDF Datasets. In: 24th AAAI Conf. on Artificial Intelligence, Atlanta, GA, USA, July 11-15 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cory Henson
    • 1
  • Krishnaprasad Thirunarayan
    • 1
  • Amit Sheth
    • 1
  1. 1.Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis)Wright State UniversityDaytonUSA

Personalised recommendations