Quality Reasoning in the Semantic Web

  • Chris Baillie
  • Peter Edwards
  • Edoardo Pignotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7650)


Assessing the quality of data published on the Web has been identified as an essential step in selecting reliable information for use in tasks such as decision making. This paper discusses a quality assessment framework based on semantic web technologies and outlines a role for provenance in supporting and documenting such assessments.


provenance linked data quality assessment 


  1. 1.
    Bermudez, L., Graybeal, J., Arko, R.: A marine platforms ontology: Experiences and lessons. In: Proceedings of the Semantic Sensor Networks Workshop at the 5th International Semantic Web Conference (November 2006)Google Scholar
  2. 2.
    Bizer, C., Cygniak, R.: Quality-driven information filtering using the wiqa policy framework. Journal of Web Semantics 7, 1–10 (2009)CrossRefGoogle Scholar
  3. 3.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on Semantic Web and Information Systems 5, 1–22 (2009)Google Scholar
  4. 4.
    Botts, M., Percivall, G., Reed, C., Davidson, J.: Ogc sensor web enablement: Overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) Proceedings of Geosensor Networks 2006, pp. 175–190 (2008)Google Scholar
  5. 5.
    Furber, C., Hepp, M.: Swiqa - a semantic web information quality assessment framework. In: European Conference on Information Systems, p. 76 (2011)Google Scholar
  6. 6.
    Hartig, O., Zhao, J.: Using web data provenance for quality assessment. In: 1st Int. Workshop on the Role of Semantic Web in Provenance Management, vol. 526 (2009)Google Scholar
  7. 7.
    Kim, J., Kwon, H., Kim, D., Kwak, H., Lee, S.: Building a Service-Orient Ontology for Wireless Sensor Networks. In: 7th IEEE/ACIS International Conference on Computer and Information Science, pp. 649–654 (2008)Google Scholar
  8. 8.
    Le-Phouc, D., Hauswirth, M.: Linked open data in sensor data mashups. In: International Workshop on Semantic Sensor Networks 2009, vol. 552, pp. 1–16. CEUR (2009)Google Scholar
  9. 9.
    Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: Aimq: a methodology for information quality assessmemt. Information and Management 40, 133–146 (2002)CrossRefGoogle Scholar
  10. 10.
    Miles, S., Groth, P., Munroe, S., Moreau, L.: Prime: A methodology for developing provenance-aware applications. ACM Transactions on Software Engineering and Methodology 20(3), 39–46 (2009)Google Scholar
  11. 11.
    Page, K.R., Roure, D.C.D., Martinez, K., Sadler, J.D., Kit, O.Y.: Linked sensor data: Restfully serving rdf and gml. In: International Workshop on Semantic Sensor Networks 2009, vol. 522, pp. 49–63 (October 2009)Google Scholar
  12. 12.
    Patel-Schneider, P.F., Fensel, D.: Layering the Semantic Web: Problems and Directions. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 16–29. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chris Baillie
    • 1
  • Peter Edwards
    • 1
  • Edoardo Pignotti
    • 1
  1. 1.Computing Science & dot.rural Digital Economy ResearchUniversity of AberdeenUnited Kingdom

Personalised recommendations