Advanced Materials Modelling for Structures pp 31-41

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 19)

Finite Element Modelling of the Thermo-Mechanical Behaviour of a 9Cr Martensitic Steel



A multi-axial, unified sinh viscoplastic material model has been developed to model the behaviour of advanced materials subjected to high temperature cyclic loading. The material model accounts for rate-dependent effects related to high temperature creep and cyclic plasticity effects such as isotropic and kinematic hardening. The material model, which is capable of simulating both isothermal and anisothermal loading conditions, is implemented in multi-axial form in a material user subroutine and validated against uniaxial test data. The results validate the implementation for both isothermal and anisothermal uniaxial loading conditions for as-new P91 steel.


  1. 1.
    ASME Boiler and Pressure Vessel Code, 1998. Section II, Part D, ASME, New York (1998)Google Scholar
  2. 2.
    Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)CrossRefGoogle Scholar
  3. 3.
    Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations-part I: rules developed with internal variable concept. J. Press. Vessel Tech. 105, 153–158 (1983)CrossRefGoogle Scholar
  4. 4.
    Dunne, F., Petrinic, N.: Introduction to Computational Plasticity. Oxford University Press, Oxford (2007)Google Scholar
  5. 5.
    Dyson, B.F., Osgerby, S.: Modelling and analysis of creep deformation and fracture in a 1Cr1/2Mo ferritic steel. NPL Report DMM(A) 116, 1993Google Scholar
  6. 6.
    Farragher, T.P., Scully, S., O’Dowd, N.P., Leen, S.B.: Thermomechanical Analysis of a Pressurised Pipe Under Plant Conditions. Int. J. Press. Vessel Tech. (2012, in press)Google Scholar
  7. 7.
    Fournier, B., Sauzay, M., Barcelo, F., Rauch, E., Renault, A., Cozzika, T., Dupuy, L., Pineau, A.: Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part II. Microstructural evolutions. Metall. Mater. Trans. A 40, 330–341 (2009)CrossRefGoogle Scholar
  8. 8.
    Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1996)Google Scholar
  9. 9.
    Hyde, C.J., Sun, W., Leen, S.B.: Cyclic thermo-mechanical material modelling and testing of 316 stainless steel. Int. J. Press. Vessel. Pip. 87, 29–33 (2010)Google Scholar
  10. 10.
    Koo, G.H., Kwon, J.H.: Identification of inelastic material parameters for modified 9Cr–1Mo steel applicable to the plastic and viscoplastic constitutive equations. Int. J. Press. Vessel. Pip. 88, 26–33 (2011)CrossRefGoogle Scholar
  11. 11.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (2000)Google Scholar
  12. 12.
    Mahmoudi, A.H., Pezeshki-Najafabadi, S.M., Badnava, H.: Parameter determination of Chaboche kinematic hardening model using a multi objective genetic algorithm. Comput. Mater. Sci. 50, 1114–1122 (2011)CrossRefGoogle Scholar
  13. 13.
    Miller, A.K.: The MATMOD equations, In: Miller, A.K. Unified Constitutive Equations for Creep and Plasticity, pp. 139–220. Elsevier Applied Science, London (1987)Google Scholar
  14. 14.
    Perrin, I.J., Hayhurst, D.R.: Creep constitutive equations for a 0.5Cr–0.5Mo–0.25V ferritic steel in the temperature range 600–675\({^\circ }\)C. J. Strain Anal. 31, 299–314 (1996)CrossRefGoogle Scholar
  15. 15.
    Saad, A.A., Hyde, C.J., Sun, W., Hyde, T.H.: Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400–600\(^\circ \)C. Mater. High Temp. 28(3), 212–218 (2011)CrossRefGoogle Scholar
  16. 16.
    Saad, A.A., Sun, W., Hyde, T.H., Tanner, D.W.J.: Tanner, Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature. Procedia Eng. 10, 1103–1108 (2011)CrossRefGoogle Scholar
  17. 17.
    Scully, S.: ESB Energy International, personal communication (2012)Google Scholar
  18. 18.
    Shrestha, T., Basirat, M., Charit, I., Potirniche, G.P., Rink, K.K., Sahaym, U.: Creep deformation mechanisms in modified 9Cr–1Mo steel. J. Nucl. Mater. 423, 110–119 (2012)Google Scholar
  19. 19.
    Tanner, D.W.J., Sun. W., Hyde, T.H.: FE analysis of a notched bar under thermomechanical fatigue using a unified viscoplasticity model, Procedia Engineering. Procedia Eng. 10, 1081–1086 (2011)Google Scholar
  20. 20.
    Tong, J., Vermeulen, B.: The description of cyclic plasticity and viscoplasticity of Waspaloy using unified constitutive equations. Int. J. Fatigue 25, 413–420 (2003)CrossRefGoogle Scholar
  21. 21.
    Zhan, Z.: A study of creep-fatigue interaction in a new nickel-based superalloy. PhD thesis, University of Portsmouth (2004)Google Scholar
  22. 22.
    Zhang, Z., Delagnes, D., Bernhart, G.: Anisothermal cyclic plasticity modelling of martensitic steels. Int. J. Fatigue 24, 635–648 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. A. Barrett
    • 3
    • 1
  • P. E. O’Donoghue
    • 2
    • 3
  • S. B. Leen
    • 1
    • 3
  1. 1.Mechanical and Biomedical EngineeringCollege of Engineering and Informatics, NUIGalwayIreland
  2. 2.Civil EngineeringCollege of Engineering and Informatics, NUIGalwayIreland
  3. 3.Ryan Institute for Environmental, Marine and Energy Research, NUIGalwayIreland

Personalised recommendations