High-Temperature Inelastic Behavior of the Austenitic Steel AISI Type 316

  • Holm AltenbachEmail author
  • Yevgen Gorash
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 19)


A conventional material model is extended to taking into account of varying thermo-mechanical loading conditions in a wide stress range. The developed model basis is a creep constitutive law in the form of the hyperbolic sine stress response function originally proposed by Nadai. The extension is done by incorporation of two additional inner variables reflecting hardening and recovery effects under cyclic loading conditions. The first one is presented by the relatively fast saturating back-stress \(K\) describing the kinematic hardening. The second one is presented by the relatively slow saturating parameter \(H\) describing the isotropic hardening. Evolution equations for \(K\) and \(H\) originally proposed by Chaboche are formulated in a modified form and based on the Frederick-Armstrong concept. The uniaxial modelling results are compared with cyclic stress-strain diagrams and alternative experimental data in the form of creep curves, tensile stress-strain diagrams, relaxation curves, etc. for the austenitic steel AISI type 316 at 600\(\,^{\circ }\)C in a wide stress range.


Creep Strain Creep Curve Isotropic Hardening Kinematic Hardening Inelastic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brnic, J., Niu, J., Canadija, M., Turkalj, G., Lanc, D.: Behavior of AISI 316L steel subjected to uniaxial state of stress at elevated temperatures. J. Mater. Sci. Technol. 25(2), 175–180 (2009)Google Scholar
  2. 2.
    Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5, 247–302 (1989)CrossRefGoogle Scholar
  3. 3.
    Douglas, J., Spindler, M., Dennis, R.: Development of an advanced creep model for type 316 stainless steel. In: Proceedings of CREEP8: 8th International Conference on Creep and Fatigue at Elevated Temperatures, CREEP2007-26152, pp. 399–418. ASME, San Antonio (2007)Google Scholar
  4. 4.
    Frederick, C.O., Armstrong, P.J.: A mathematical representation of the multiaxial bauschinger effect. Mater. High Temp. 24(1), 1–26 (2007)CrossRefGoogle Scholar
  5. 5.
    French, D.N.: Metallurgical Failures in Fossil Fired Boilers. Wiley, New York (1993)Google Scholar
  6. 6.
    Gong, Y.P., Hyde, C.J., Sun, W., Hyde, T.H.: Determination of material properties in the Chaboche unified viscoplasticity model. J. Mater. Des. Appl. 224(1), 19–29 (2010)Google Scholar
  7. 7.
    Gorash, Y., Altenbach, H.: Creep-fatigue analysis of the steel AISI type 316 component failure. Proc. Appl. Math. Mech. 11, 373–374 (2011). doi: 10.1002/pamm.201110178
  8. 8.
    Gorash, Y., Altenbach, H., Lvov, G.: Modelling of high-temperature inelastic behaviour of the austenitic steel AISI type 316 using a continuum damage mechanics approach. J. Strain Anal. 47(4), 229–243 (2012)CrossRefGoogle Scholar
  9. 9.
    Karditsas, P.J., Baptiste, M.J.: Thermal and structural properties of fusion related materials. ARIES Properties Archive: UKAEA FUS 294, Euratom/UKAEA Fusion Association, San Diego (1995)Google Scholar
  10. 10.
    Khazhinskiy, G.M.: Models of Deformation and Fracture of Metals (in Russian). Nauchnyy Mir, Moscow (2011)Google Scholar
  11. 11.
    Kloc, L., Fiala, J.: Viscous creep in metals at intermediate temperatures. Kovové Materiály 43(2), 105–112 (2005)Google Scholar
  12. 12.
    Kloc, L., Sklenička, V., Ventruba, J.: Comparison of low creep properties of ferritic and austenitic creep resistant steels. Mater. Sci. Eng. A 319–321, 774–778 (2001)Google Scholar
  13. 13.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)Google Scholar
  14. 14.
    Nadai, A.: The influence of time upon creep. The hyperbolic sine creep law. In: J.M. Lessells, J.P. Den Hartog, G.B. Karelitz, R.E. Peterson, H.M. Westergaard (eds.) Stephen Timoshenko 60th Anniversary Volume, pp. 155–170. The Macmillan Co., New York (1938)Google Scholar
  15. 15.
    Naumenko, K., Altenbach, H.: Modelling of Creep for Structural Analysis. Springer, Berlin (2007)Google Scholar
  16. 16.
    Naumenko, K., Altenbach, H., Kutschke, A.: A combined model for hardening, softening, and damage processes in advanced heat resistant steels at elevated temperature. Int. J. Damage Mech. 20(4), 578–597 (2011)CrossRefGoogle Scholar
  17. 17.
    Okada, M. et al.: Data sheets on the elevated-temperature stress relaxation properties of 18Cr-12Ni-Mo hot rolled stainless steel plate (SUS 316-HP). NRIM Creep Data Sheet No. 42, National Research Institute for Metals, Tsukuba (1996)Google Scholar
  18. 18.
    Okada, M. et al.: Data sheets on the elevated-temperature properties of 18Cr-12Ni-Mo stainless steel tubes for boilers and heat exchangers (SUS 316H TB). NRIM Creep Data Sheet No. 6B, National Research Institute for Metals, Tsukuba (2000)Google Scholar
  19. 19.
    Rieth, M., Falkenstein, A., Graf, P., Heger, S., Jäntsch, U., Klimiankou, M., Materna-Morris, E., Zimmermann, H.: Creep of the austenitic steel AISI 316 L(N): experiments and models. Technical Report: FZKA 7065, Forschungszentrum Karlsruhe GmbH, Karlsruhe (2004)Google Scholar
  20. 20.
    Skelton, R.P.: Creep-fatigue interactions (crack initiation). In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Creep and High-Temperature Failure, Comprehensive Structural Integrity, vol. 5, pp. 25–112. Elsevier, Amsterdam (2003)Google Scholar
  21. 21.
    Viswanathan, R.: Damage Mechanisms and Life Assessment of High-Temperature Components. ASM International, Metals Park (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Engineering MechanicsOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations