Rule Acquisition in the Proceeding of Heuristic Sudoku Solving

  • Haiyan Zhou
  • Yukun Xiong
  • Zhoujun Long
  • Sanxia Fan
  • Xuyan Wang
  • Yulin Qin
  • Ning Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7670)


To investigate how human brain was involved in explicit rule acquisition during problem solving, with the technique of fMRI, we used a task of simplified Sudoku solving to detect the change of brain activity from a freshman to a rule-acquired solver. Brain activities in the lateral prefrontal, inferior parietal and anterior cingulated cortex increased suggested a goal-directed processing with more accurate representation of problem state and more efficient rule retrieval. The decrease deactivation in the medial prefrontal gyrus might relate to a reduced resource allocation in the later stage; and the signal change pattern of first increasing then decreasing in the superior parietal gyrus might suggest a sensible response for attention to visual perception and recognition during the proceeds.


Default Mode Network Bold Signal Inferior Parietal Lobe Posterior Parietal Cortex Heuristic Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anzai, Y., Simon, H.: The theory of learning by doing. Psychological Review 86(2), 124–140 (1979)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R., Albert, M.V., Fincham, J.M.: Tracing problem solving in real time: fmri analysis of the subject-paced tower of hanoi. Journal of Cognitive Neuroscience 17(8), 1261–1274 (2005)CrossRefGoogle Scholar
  3. 3.
    Fincham, J.M., Carter, C.S., van Veen, V., Stenger, V.A., Anderson, J.R.: Neural mechanisms of planning: A comuptational analysis using event-related fmri. Proceedings of the National Academy Sciences 99(5), 3346–3351 (2002)CrossRefGoogle Scholar
  4. 4.
    Newman, S.D., Carpernter, P.A., Varma, S., Just, M.A.: Frongal and parietal participatation in problem solving i the tower of london: fmri and comuputational modeling of planning and high-level perception. Neuropsychoologia 41, 1668–1682 (2003)CrossRefGoogle Scholar
  5. 5.
    Qin, Y.L., Carter, C.S., Silk, E.M., Stenger, V.A., Fissell, K., Goode, A., Anderson, J.R.: The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy Sciences 101(15), 5686–5691 (2004)CrossRefGoogle Scholar
  6. 6.
    Anderson, J.R., Fincham, J.M., Qin, Y., Stocco, A.: A central circuit of the mind. Trends in Cognitive Sciences 12(4), 136–143 (2008)CrossRefGoogle Scholar
  7. 7.
    Cabeza, R., Dolcos, F., Graham, R., Nyberg, L.: Similarities and differneces in the neural correlated of episodic memory retrieval and working memory. Neuroimage 16, 317–330 (2002)CrossRefGoogle Scholar
  8. 8.
    Donaldson, D., Petersen, S., Ollinger, J., Buchner, R.: Dissociating state and item components of recognition memory using fmri. Neuroimage 13, 129–142 (2001)CrossRefGoogle Scholar
  9. 9.
    Fletcher, P.C., Henson, R.N.A.: Frontal lobes and human memory: insights from neuroimaging. Brain 124, 849–881 (2001)CrossRefGoogle Scholar
  10. 10.
    Dehaene, S., Piazza, M., Pinel, P., Cohen, L.: Three parietal circuits for nunber processing. Cognitive Neuropsychology 20, 487–506 (2003)CrossRefGoogle Scholar
  11. 11.
    Reichle, E., Carpenter, P., Just, M.: The neural basis of strategy and skill in sentence-picture verification. Cognitive Psychology 40, 261–295 (2000)CrossRefGoogle Scholar
  12. 12.
    D’Esposito, M., Detre, J., Alsop, D., Shin, R., Atlas, S., Grossman, M.: The neural basis of the central executive system of working memory. Nature 378(16), 279–281 (1995)CrossRefGoogle Scholar
  13. 13.
    Posner, M., Dehaene, S.: Attentional networks. Trends in Neurosciences 17(2), 75–79 (1994)CrossRefGoogle Scholar
  14. 14.
    Gehring, W., Goss, B., Coles, M., Meyer, D., Donchi, E.: A neural systemfor error detection and compensation. Psychological Science 4(6), 383–390 (1993)CrossRefGoogle Scholar
  15. 15.
    Carter, C., Macdonald, A., Botvinick, M., Ross, L., Stenger, V., Noll, D., Cohen, J.: Parsing executive processes: Strategic versus evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy Sciences 97(4), 1944–1948 (2000)CrossRefGoogle Scholar
  16. 16.
    Yeung, N., Botvinick, M., Cohen, J.: The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review 111(4), 931–959 (2004)CrossRefGoogle Scholar
  17. 17.
    Jia, X., Liang, P., Lu, J., Yang, Y., Zhong, N., Li, K.: Common and dissociable neural correlates associated with component processes of inductive reasoning. Neuroimage 56, 2292–2299 (2004)CrossRefGoogle Scholar
  18. 18.
    Goel, V., Dolan, R.: Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition 93(3), 109–121 (2004)CrossRefGoogle Scholar
  19. 19.
    Reber, A.: Implicit learning of artificial grammers. Journal of Verbal Learning and Verbal Behavior 6(6), 855–863 (1967)CrossRefGoogle Scholar
  20. 20.
    Strange, B., Henson, R., Friston, K., Dolan, R.: Anterior perfrontal cortex mediates rule learning in humans. Cerebral Cortex 11, 1040–1046 (2001)CrossRefGoogle Scholar
  21. 21.
    Anderson, J.R., Anderson, J.F., Ferris, J.L., Fincham, J.M., Jung, K.J.: The lateral inferior prefrontal cortex and anterior cingulate cortex are engaged at different stages in the solution of insight problems. Proceedings of the National Academy Sciences 106(26), 10799–10804 (2009)CrossRefGoogle Scholar
  22. 22.
    Luo, J., Niki, K.: Function of hippocamupus in ”insight” of problem solving. Hippocampus 13, 316–323 (2003)CrossRefGoogle Scholar
  23. 23.
    Petrides, M., Pandya, D.: Projections to the fontal cortex form the posterior parietal region in the rhesus monkey. Journal of Comparative Neurology 228, 105–116 (1984)CrossRefGoogle Scholar
  24. 24.
    Cabeza, R., Nyberg, L.: Imaging cognition ii: An empireical review of 275 pet and fmri studies. Journal of Cognitive Neuroscience 12(1), 1–47 (2000)CrossRefGoogle Scholar
  25. 25.
    Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cogntive Science 15(10), 483–506 (2011)CrossRefGoogle Scholar
  26. 26.
    Koechlin, E., Summerfield, C.: An information theoretical approach to prefrontal executive function. Trends in Cogntive Science 11(6), 229–236 (2007)CrossRefGoogle Scholar
  27. 27.
    Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex 22(1), 158–165 (2012)CrossRefGoogle Scholar
  28. 28.
    Raichle, M.: Two views of brain function. Trends in Cognitive Sciences 14(4), 180–190 (2010)CrossRefGoogle Scholar
  29. 29.
    Greicius, M., Krasnow, B., Reiss, A., Menon, V.: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy Sciences 100(1), 253–258 (2003)CrossRefGoogle Scholar
  30. 30.
    Raichle, M.E., McLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proceedings of the National Academy Sciences 98(2), 676–682 (2001)CrossRefGoogle Scholar
  31. 31.
    Spreng, R., Mar, R., Kim, A.: The common neural basis of autobiographical memory, perception, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience 21(3), 489–510 (2009)CrossRefGoogle Scholar
  32. 32.
    Amodio, D., Frith, C.: Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience 7, 268–277 (2006)CrossRefGoogle Scholar
  33. 33.
    Rangel, A., Camerer, C., Read, P.: A framework for studing the neurobiolgoy of value-based decision making. Nature Reviews Neuroscience 9, 543–556 (2008)CrossRefGoogle Scholar
  34. 34.
    Etkin, A., Egner, T., Kalisch, R.: Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences 15(2), 85–93 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Haiyan Zhou
    • 1
    • 2
  • Yukun Xiong
    • 1
    • 2
  • Zhoujun Long
    • 1
    • 2
  • Sanxia Fan
    • 1
    • 2
  • Xuyan Wang
    • 1
    • 2
  • Yulin Qin
    • 1
    • 2
    • 3
  • Ning Zhong
    • 1
    • 2
    • 4
  1. 1.International WIC InstituteBeijing University of TechnologyChina
  2. 2.Beijing Key Laboratory of MRI and Brain InformaticsChina
  3. 3.Dept. of PsychologyCarnegie Mellon UniversityUSA
  4. 4.Dept. of Life Science and InformaticsMaebashi Institute of TechnologyJapan

Personalised recommendations