3D Aided Face Recognition across Pose Variations

  • Wuming Zhang
  • Di Huang
  • Yunhong Wang
  • Liming Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7701)

Abstract

Recently, 3D aided face recognition, concentrating on improving performance of 2D techniques via 3D data, has received increasing attention due to its wide application potential in real condition. In this paper, we present a novel 3D aided face recognition method that can deal with the probe images in different viewpoints. It first estimates the face pose based on the Random Regression Forest, and then rotates the 3D face models in the gallery set to that of the probe pose to generate specific gallery sample for matching, which largely reduces the influence of head pose variations. Experiments are carried out on a subset of the FRGC v1.0 database, and the achieved performance clearly highlights the effectiveness of the proposed method.

Keywords

Face recognition pose estimation random regression forests LBP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face recognition: a literature survey. ACM Computing Surveys 35, 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data-with application to face recognition. PR 34(10), 2067–2070 (2000)Google Scholar
  4. 4.
    Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Huang, J., Yuen, P., Chen, W., Lai, J.: Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations. IEEE TSMC-B 37(4), 847–862 (2007)Google Scholar
  6. 6.
    Wiskott, L.H., Fellous, J.M., Kuiger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE TPAMI 19, 775–779 (1997)CrossRefGoogle Scholar
  7. 7.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Bowyer, K.W., Chang, K., Flynn, P.J.: A survey of approaches and challenges in 3d and multi-modal 3d + 2d face recognition. CVIU 101, 1–15 (2006)Google Scholar
  10. 10.
    Scheenstra, A., Ruifrok, A., Veltkamp, R.C.: A Survey of 3D Face Recognition Methods. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 891–899. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Huang, D., Ardabilian, M., Wang, Y., Chen, L.: Oriented gradient maps based automatic asymmetric 3D-2D face recognition. In: ICB (2012)Google Scholar
  12. 12.
    Zhang, L., Wang, S., Samaras, D.: Face synthesis and recognition under arbitrary unknown lighting using a spherical harmonic basis morphable model. In: CVPR (2005)Google Scholar
  13. 13.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE TPAMI 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  14. 14.
    Toderici, G., Zafeiriou, S., Tzimiropoulos, G., Petrou, M., Theoharis, T., Kakadiaris, I.A.: Bidirectional relighting for 3D-aided 2D face recognition. In: CVPR (2010)Google Scholar
  15. 15.
    Szeptycki, P., Ardabilian, M., Chen, L.: A coarse-to-fine curvature analysis-based rotation invariant 3d face landmarking. In: BTAS (2009)Google Scholar
  16. 16.
    Murphy-Chutorian, E., Trivedi, M.: Head pose estimation in computer vision: a survey. IEEE TPAMI, 442–449 (2008)Google Scholar
  17. 17.
    Beymer, D.: Face recognition under varying pose. In: Proc. CVPR (1994)Google Scholar
  18. 18.
    Liang, X., Tong, W.: Face pose estimation using near-infrared images. In: CSNT (2012)Google Scholar
  19. 19.
    Krüger, K.N., Pötzsch, M., van der Malsburg, C.: Determination of face position and pose with a learned representation based on labeled graphs. IVC 15(8), 665–673 (1997)CrossRefGoogle Scholar
  20. 20.
    Cootes, T.F., Edwards, G., Taylor, C.J.: Active Appearance Models. IEEE TPAMI (2001)Google Scholar
  21. 21.
    Wu, J., Trivedi, M.: A two-stage head pose estimation framework and evaluation. PR 41(3), 1138–1158 (2008)MATHCrossRefGoogle Scholar
  22. 22.
    Liu, X., Lu, H., Zhang, D.: Head Pose Estimation Based on Manifold Embedding and Distance Metric Learning. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part I. LNCS, vol. 5994, pp. 61–70. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Murphy-Chutorian, E., Doshi, A., Trivedi, M.M.: Head pose estimation for driver assistance systems: A robust algorithm and experimental evaluation. In: Proc. IEEE Int. Transp. Syst. Conf., pp. 709–714 (2007)Google Scholar
  24. 24.
    Osadchy, M., Cun, Y.L., Miller, M.L.: Synergistic face detection and pose estimation with energy-based models. JMLR 8, 1197–1215 (2007)Google Scholar
  25. 25.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth and Brooks, Monterey (1984)MATHGoogle Scholar
  26. 26.
    Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. In: CVPR (2011)Google Scholar
  27. 27.
    Tang, Y., Sun, Z., Tan, T.: Real-Time Head Pose Estimation Using Random Regression Forests. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 66–73. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Ojala, T., Pietikäinen, M., Maenpaa, T.: Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  29. 29.
    Huang, D., Ardabilian, M., Wang, Y., Chen, L.: Asymmetric 3D/2D face recognition based on LBP facial representation and canonical correlation analysis. In: ICIP (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wuming Zhang
    • 1
    • 2
  • Di Huang
    • 2
  • Yunhong Wang
    • 2
  • Liming Chen
    • 1
  1. 1.MI DepartmentLIRIS, CNRS 5205, Ecole Centrale de LyonLyonFrance
  2. 2.IRIP, School of Computer Science and EngineeringBeihang Univ.BeijingChina

Personalised recommendations