Coupled Cluster Theories for Strongly Correlated Molecular Systems

  • Karol Kowalski
  • Kiran Bhaskaran-Nair
  • Jiří Brabec
  • Jiří Pittner
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 176)

Abstract

The basic aspects of coupled cluster (CC) theories are reviewed from the perspective of its applicability to molecular systems with strong many-body correlation effects. In practice strong correlation refers to systems where the corresponding wavefunctions are characterized by multiconfigurational character corresponding to collective excitations from the reference function/functions. Several CC formalisms specifically designed to tackle these situations are discussed. These include single reference CC methodologies accounting for high-rank excitations and multireference CC approaches. Special attention is paid to non-iterative methods, which provide a widely accepted compromise between accuracy and numerical cost. We also discuss major theoretical and computational challenges which have to be addressed for the future developments of CC methodologies.

References

  1. 1.
    F. Coester, Nucl. Phys. 7, 421 (1958)CrossRefGoogle Scholar
  2. 2.
    F. Coester, H. Kümmel, Nucl. Phys. 17, 477 (1960)MATHCrossRefGoogle Scholar
  3. 3.
    H. Kümmel, in Lectures on the Many-Body Problem, ed by E.R. Caianiello (Academic Press, New York, 1962)Google Scholar
  4. 4.
    J. Čížek, Adv. Chem. Phys. 14, 35 (1969)CrossRefGoogle Scholar
  5. 5.
    J. Čížek, J. Paldus, Int. J. Quantum Chem. 5, 359 (1971)CrossRefGoogle Scholar
  6. 6.
    J. Paldus, J. Čížek, I. Shavitt, Phys. Rev. A 5, 50 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Dean, M. Hjorth-Jensen, Phys. Rev. C 69, 054320 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    J. Paldus, in New Horizons of Quantum Chemistry, ed by P.-O. Löwdin, B. Pullman (Reidel, Dordrecht, 1983), p. 31Google Scholar
  9. 9.
    R.F. Bishop, Theoret. Chim. Acta 80, 95 (1991)CrossRefGoogle Scholar
  10. 10.
    R.J. Bartlett, in Modern Electronic Structure Theory, Part I, ed by D.R. Yarkony (World Scientific, Singapore, 1995), p. 1047Google Scholar
  11. 11.
    J. Paldus, X. Li, Adv. Chem. Phys. 110, 1 (1999)CrossRefGoogle Scholar
  12. 12.
    T.D. Crawford, H.F. Schaefer, Rev. Comput. Chem. 14, 33 (2000)CrossRefGoogle Scholar
  13. 13.
    P. Piecuch, K. Kowalski, I.S.O. Pimienta, M.J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002)CrossRefGoogle Scholar
  14. 14.
    R.J. Bartlett, M. Musiał, Rev. Mod. Phys. 79, 291 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    D.I. Lyakh, M. Musiał, V.F. Lotrich, R.J. Bartlett, Chem. Rev. 112, 182 (2012)CrossRefGoogle Scholar
  16. 16.
    I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009)Google Scholar
  17. 17.
    G.D. Purvis, R.J. Bartlett, J. Chem. Phys. 76, 1910 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    J. Noga, R.J. Bartlett, J. Chem. Phys. 86, 7041 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    J. Noga, R.J. Bartlett, J. Chem. Phys. 89, 3401 (1988) (Erratum)Google Scholar
  20. 20.
    G.E. Scuseria, H.F. Schaefer III, Chem. Phys. Lett. 152, 382 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Kucharski, R.J. Bartlett, Theoret. Chim. Acta 80, 387 (1991)CrossRefGoogle Scholar
  22. 22.
    N. Oliphant, L. Adamowicz, J. Chem. Phys. 95, 6645 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    M. Musiał, S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 116, 4382 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M. Musiał, R.J. Bartlett, J. Chem. Phys. 122, 224102 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M. Kállay, P.R. Surján, J. Chem. Phys. 113, 1359 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    T. Živković, H.J. Monkhorst, J. Math. Phys. 19, 1007 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    L. Adamowicz, R.J. Bartlett, Int. J. Quantum Chem. 217, S19 (1985)Google Scholar
  28. 28.
    P. Piecuch, S. Zarrabian, J. Paldus, J. Čížek, Phys. Rev. B 42, 3351 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    L. Meissner, A. Balková, R.J. Bartlett, Chem. Phys. Lett. 212, 177 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    K. Kowalski, K. Jankowski, Phys. Rev. Lett. 81, 1195 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    K. Kowalski, K. Jankowski, J. Chem. Phys. 110, 3714 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    K. Kowalski, K. Jankowski, J. Chem. Phys. 110, 9345 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    K. Kowalski, K. Jankowski, J. Chem. Phys. 111, 2940 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    K. Jankowski, K. Kowalski, J. Chem. Phys. 111, 2952 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    E.L. Allgower, K. Georg, Numerical Continuation Methods (Springer, Berlin, 1990)Google Scholar
  36. 36.
    P. Piecuch, K. Kowalski, in Computational Chemistry: Reviews of Current Trends, ed by J. Leszczynski (World Scientific, Singapore, 2000), p. 1Google Scholar
  37. 37.
    K. Kowalski, P. Piecuch, J. Chem. Phys. 113, 18 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    G.D. Purvis, R.J. Bartlett, J. Chem. Phys. 75, 1284 (1981)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    P. Piecuch, L. Adamowicz, J. Chem. Phys. 100, 5857 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM Monographs on Mathematical Modeling and Computation, (Society for Industrial and Applied Mathematics, Philadelphia, 1998)Google Scholar
  42. 42.
    A.G. Taube, R.J. Bartlett, J. Chem. Phys. 130, 144112 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    K.A. Brueckner, Phys. Rev. 97, 1353 (1955)ADSMATHCrossRefGoogle Scholar
  44. 44.
    K.A. Brueckner, Phys. Rev. 100, 36 (1955)ADSMATHCrossRefGoogle Scholar
  45. 45.
    J. Goldstone, Proc. Roy. Soc. London A239, 267 (1957)MathSciNetADSGoogle Scholar
  46. 46.
    I. Lindgren, J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982)Google Scholar
  47. 47.
    W. Kutzelnigg, Int. J. Quantum Chem. 109, 3858 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    K.A. Peterson, D. Feller, D.A. Dixon, Theoret. Chem. Acc. 131, 1079 (2012)CrossRefGoogle Scholar
  49. 49.
    Y.S. Lee, R.J. Bartlett, J. Chem. Phys. 80, 4371 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    Y.S. Lee, S.A. Kucharski, R.J. Bartlett, ibid. 81, 5906 (1984)Google Scholar
  51. 51.
    Y.S. Lee, S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 82, 5761 (1985) (Erratum)Google Scholar
  52. 52.
    J. Noga, R.J. Bartlett, M. Urban, Chem. Phys. Lett. 134, 126 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    G.W. Trucks, J. Noga, R.J. Bartlett, ibid. 145, 548 (1988)Google Scholar
  54. 54.
    M. Urban, J. Noga, S.J. Cole, R.J. Bartlett, J. Chem. Phys. 83, 4041 (1985)ADSCrossRefGoogle Scholar
  55. 55.
    S.J. Cole, R.J. Bartlett, J. Chem. Phys. 86, 873 (1987)ADSCrossRefGoogle Scholar
  56. 56.
    K. Raghavachari, G.W. Trucks, J.A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 108, 5243 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 108, 5255 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 108, 9221 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    J.R. Thomas, B.J. DeLeeuw, G. Vacek, T.D. Crawford, Y. Yamaguchi, H.F. Schaefer III, J. Chem. Phys. 99, 403 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    J.F. Stanton, Chem. Phys. Lett. 281, 130 (1997)ADSCrossRefGoogle Scholar
  62. 62.
    J.F. Stanton, J. Gauss, J. Chem. Phys. 103, 1064 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    J.F. Stanton, J. Gauss, Theoret. Chim. Acta 93, 303 (1996)CrossRefGoogle Scholar
  64. 64.
    T.D. Crawford, J.F. Stanton, Int. J. Quantum Chem. 70, 601 (1998)CrossRefGoogle Scholar
  65. 65.
    S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 108, 5243 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    S.R. Gwaltney, M. Head-Gordon, Chem. Phys. Lett. 323, 21 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    S.R. Gwaltney, C.D. Sherrill, M. Head-Gordon, A.I. Krylov, J. Chem. Phys. 113, 3548 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    S.R. Gwaltney, M. Head-Gordon, J. Chem. Phys. 115, 2014 (2001)ADSCrossRefGoogle Scholar
  69. 69.
    S.R. Gwaltney, E.F.C. Byrd, T. Van Voorhis, M. Head-Gordon, Chem. Phys. Lett. 353, 359 (2002)ADSCrossRefGoogle Scholar
  70. 70.
    S. Hirata, M. Nooijen, I. Grabowski, R.J. Bartlett, J. Chem. Phys. 114, 3919 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    S. Hirata, M. Nooijen, I. Grabowski, R.J. Bartlett, J. Chem. Phys. 115, 3967 (2001)ADSCrossRefGoogle Scholar
  72. 72.
    Y.J. Bomble, J.F. Stanton, M. Kallay, J. Gauss, J. Chem. Phys. 123, 054101 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    M. Kállay, J. Gauss, J. Chem. Phys. 123, 214105 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    A.G. Taube, R.J. Bartlett, J. Chem. Phys. 128, 044110 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    A.G. Taube, R.J. Bartlett, J. Chem. Phys. 128, 044111 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    H. Koch, O. Christiansen, P. Jørgensen, A.M. Sanchez de Merás, J. Chem. Phys. 106, 1808 (1997)ADSCrossRefGoogle Scholar
  77. 77.
    J.S. Arponen, Ann. Phys. (N.Y.) 151, 311 (1983)ADSCrossRefGoogle Scholar
  78. 78.
    E.A. Salter, G.W. Trucks, R.J. Bartlett, J. Chem. Phys. 90, 1752 (1989)ADSCrossRefGoogle Scholar
  79. 79.
    H. Koch, P. Jørgensen, J. Chem. Phys. 93, 3333 (1990)ADSCrossRefGoogle Scholar
  80. 80.
    K. Kowalski, P. Piecuch, J. Chem. Phys. 122, 074107 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    P. Piecuch, M. Włoch, J. Chem. Phys. 123, 224105 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    K. Kowalski, P.-D. Fan, J. Chem. Phys. 130, 084112 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    K. Kowalski, M. Valiev, J. Chem. Phys. 131, 234107 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    S.A. Kucharski, R.J. Bartlett, Theoret. Chim. Acta 80, 387 (1991)CrossRefGoogle Scholar
  85. 85.
    J.F. Stanton, J. Gauss, J.D. Watts, R.J. Bartlett, J. Chem. Phys. 94, 4334 (1991)ADSCrossRefGoogle Scholar
  86. 86.
    S. Hirata, J. Phys. Chem. A 107, 9887 (2003)CrossRefGoogle Scholar
  87. 87.
    A.A. Auer, G. Baumgartner, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cocirva, X.Y. Gao, R.J. Harrison, S. Krishnan, C.C. Lam, Q.D. Lu, M. Nooijen, R.M. Pitzer, J. Ramanujam, P. Sadayappan, A. Sibirakov, Mol. Phys. 104, 211 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Aprà, T.L. Windus, W. de Jong, Comput. Phys. Commun. 181, 1477 (2010)ADSMATHCrossRefGoogle Scholar
  89. 89.
    V.F. Lotrich, N. Flocke, M. Ponton, A.D. Yau, A. Perera, E. Deumens, R.J. Bartlett, J. Chem. Phys. 128, 194104 (2008)ADSCrossRefGoogle Scholar
  90. 90.
    T.D. Crawford, T.J. Lee, H.F. Schaefer III, J. Chem. Phys. 107, 7943 (1997)ADSCrossRefGoogle Scholar
  91. 91.
    P. Jankowski, B. Jeziorski, J. Chem. Phys. 111, 1857 (1999)ADSCrossRefGoogle Scholar
  92. 92.
    C.L. Janssen, H.F. Schaefer III, Theoret. Chim. Acta 79, 1 (1991)CrossRefGoogle Scholar
  93. 93.
    X. Li, J. Paldus, J. Chem. Phys. 101, 8812 (1994)ADSCrossRefGoogle Scholar
  94. 94.
    M. Kállay, P.R. Surján, J. Chem. Phys. 115, 2945 (2001)ADSCrossRefGoogle Scholar
  95. 95.
    M. Nooijen, V.F. Lotrich, J. Mol. Struct. (Thoechem) 547, 253 (2001)CrossRefGoogle Scholar
  96. 96.
    A. Engels-Putzka, M. Hanrath, J. Chem. Phys. 134, 124106 (2011)ADSCrossRefGoogle Scholar
  97. 97.
    J. Dongarra, Int. J. High Perform. Comput. Appl. 16, 115 (2002)CrossRefGoogle Scholar
  98. 98.
    J. Nieplocha, R.J. Harrison, R.J. Littlefield, The Global Array Programming Model for High Performance Scientific Computing (SIAMNews, September, 1995)Google Scholar
  99. 99.
    J. Nieplocha, R.J. Harrison, R.J. Littlefield, J. Supercomput. 10, 197 (1996)CrossRefGoogle Scholar
  100. 100.
    J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E. Aprà, Int. J. High Perform. Comput. Appl. 20, 203 (2006)CrossRefGoogle Scholar
  101. 101.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)Google Scholar
  102. 102.
    E. Aprà, A.P. Rendell, R.J. Harrison, V. Tipparaju, W.A. de Jong, S.S. Xantheas, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (ACM, Portland, 2009)Google Scholar
  103. 103.
    S. Yoo, E. Aprà, X.C. Zeng, S.S. Xantheas, J. Phys. Chem. Lett. 1, 3122 (2010)CrossRefGoogle Scholar
  104. 104.
    K. Kowalski, P. Piecuch, J. Chem. Phys. 120, 1715 (2004)ADSCrossRefGoogle Scholar
  105. 105.
    K. Kowalski, S. Krishnamoorthy, R. Olson, V. Tipparaju, E. Aprà, Scalable implementations of accurate excited-state coupled cluster theories: application of high-level methods to Porphyrin-based systems. Paper presented at the Supercomputing 2011 conference, Seattle, 12–18 Nov 2011Google Scholar
  106. 106.
    A. Schafer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992)ADSCrossRefGoogle Scholar
  107. 107.
    A.E. DePrince III, J.R. Hammond, J. Chem. Theory Comput. 7, 1287 (2011)CrossRefGoogle Scholar
  108. 108.
    W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, J. Chem. Theory Comput. 7, 1316 (2011)CrossRefGoogle Scholar
  109. 109.
    D. Mukherjee, R.K. Moitra, A. Mukhopadhyay, Mol. Phys. 33, 955 (1977)ADSCrossRefGoogle Scholar
  110. 110.
    A. Mukhopadhyay, R.K. Moitra, D. Mukherjee, J. Phys. B 12, 1 (1979)ADSCrossRefGoogle Scholar
  111. 111.
    H. Reitz, W. Kutzelnigg, Chem. Phys. Lett. 66, 111 (1979)ADSCrossRefGoogle Scholar
  112. 112.
    M.A. Haque, D. Mukherjee, J. Chem. Phys. 80, 5058 (1984)ADSCrossRefGoogle Scholar
  113. 113.
    A. Haque, U. Kaldor, Chem. Phys. Lett. 117, 347 (1985)ADSCrossRefGoogle Scholar
  114. 114.
    B. Jeziorski, J. Paldus, J. Chem. Phys. 90, 2714 (1989)MathSciNetADSCrossRefGoogle Scholar
  115. 115.
    J.F. Stanton, R.J. Bartlett, C.M.L. Rittby, J. Chem. Phys. 97, 5560 (1992)ADSCrossRefGoogle Scholar
  116. 116.
    L. Meissner, J. Chem. Phys. 108, 9227 (1998)ADSCrossRefGoogle Scholar
  117. 117.
    M. Musiał, R.J. Bartlett, J. Chem. Phys. 121, 1670 (2004)ADSCrossRefGoogle Scholar
  118. 118.
    B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)ADSCrossRefGoogle Scholar
  119. 119.
    L. Meissner, K. Jankowski, J. Wasilewski, Int. J. Quantum Chem. 34, 535 (1988)CrossRefGoogle Scholar
  120. 120.
    B. Jeziorski, J. Paldus, J. Chem. Phys. 88, 5673 (1988)ADSCrossRefGoogle Scholar
  121. 121.
    J. Paldus, L. Pylypov, B. Jeziorski, in Many-Body Methods in Quantum Chemistry, Lecture Notes in Chemistry, vol. 52, ed by U. Kaldor (Springer, Berlin, 1989), p. 151Google Scholar
  122. 122.
    P. Piecuch, J. Paldus, Theoret. Chim. Acta 83, 69 (1992)CrossRefGoogle Scholar
  123. 123.
    J. Paldus, P. Piecuch, L. Pylypow, B. Jeziorski, Phys. Rev. A 47, 2738 (1993)ADSCrossRefGoogle Scholar
  124. 124.
    P. Piecuch, J. Paldus, Phys. Rev. A 49, 3479 (1994)ADSCrossRefGoogle Scholar
  125. 125.
    S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 95, 8227 (1991)ADSCrossRefGoogle Scholar
  126. 126.
    A. Balková, S.A. Kucharski, L. Meissner, R.J. Bartlett, Theoret. Chim. Acta. 80, 335 (1991)CrossRefGoogle Scholar
  127. 127.
    A. Balková, S.A. Kucharski, R.J. Bartlett, Chem. Phys. Lett. 182, 511 (1991)ADSCrossRefGoogle Scholar
  128. 128.
    S.A. Kucharski, A. Balková, P.G. Szalay, R.J. Bartlett, J. Chem. Phys. 97, 4289 (1992)ADSCrossRefGoogle Scholar
  129. 129.
    C. Bloch, Nucl. Phys. 6, 329 (1958)CrossRefGoogle Scholar
  130. 130.
    F. Jørgensen, Mol. Phys. 29, 1137 (1975)ADSCrossRefGoogle Scholar
  131. 131.
    C.E. Soliverez, Phys. Rev. A 24, 4 (1981)ADSCrossRefGoogle Scholar
  132. 132.
    P. Durnad, Phys. Rev. A 28, 3184 (1983)ADSCrossRefGoogle Scholar
  133. 133.
    K. Jankowski, L. Meissner, J. Wasilewski, Int. J. Quantum Chem. 28, 931 (1985)CrossRefGoogle Scholar
  134. 134.
    T.H. Dunning Jr, J. Chem. Phys. 53, 2823 (1970)ADSCrossRefGoogle Scholar
  135. 135.
    B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967)ADSCrossRefGoogle Scholar
  136. 136.
    B.H. Brandow, Adv. Quantum Chem. 10, 187 (1977)ADSCrossRefGoogle Scholar
  137. 137.
    S. Zarrabian, J. Paldus, Int. J. Quantum Chem. 38, 761 (1990)CrossRefGoogle Scholar
  138. 138.
    J.P. Finley, R.K. Chaudhuri, K.F. Freed, J. Chem. Phys. 54, 343 (1996)Google Scholar
  139. 139.
    R.K. Chaudhuri, K.F. Freed, G. Hose, P. Piecuch, K. Kowalski, M. Włoch, S. Chattopadhyay, D. Mukherjee, Z. Rolilk, Á. Szabados, G. Toth, P.R. Surján, J. Chem. Phys. 122, 134105 (2005)ADSCrossRefGoogle Scholar
  140. 140.
    M.R. Hoffmann, D. Datta, S. Das, D. Mukherjee, Á. Szabados, Z. Rolik, P.R. Surján, J. Chem. Phys. 131, 204104 (2009)ADSCrossRefGoogle Scholar
  141. 141.
    Á. Szabados, J. Chem. Phys. 134, 174113 (2011)ADSCrossRefGoogle Scholar
  142. 142.
    T.H. Schucan, H.A. Weidenmüller, Ann. Phys. 73, 108 (1972)ADSCrossRefGoogle Scholar
  143. 143.
    T.H. Schucan, H.A. Weidenmüller, Ann. Phys. ibid 76, 483 (1973)Google Scholar
  144. 144.
    K. Kowalski, P. Piecuch, Phys. Rev. A 61, 052506 (2000)ADSCrossRefGoogle Scholar
  145. 145.
    L. Meissner, R.J. Bartlett, J. Chem. Phys. 91, 4800 (1989)ADSCrossRefGoogle Scholar
  146. 146.
    L. Meissner, S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 91, 6187 (1989)ADSCrossRefGoogle Scholar
  147. 147.
    L. Meissner, R.J. Bartlett, J. Chem. Phys. 92, 561 (1990)ADSCrossRefGoogle Scholar
  148. 148.
    X. Li, J. Paldus, J. Chem. Phys. 119, 5320 (2003)ADSCrossRefGoogle Scholar
  149. 149.
    X. Li, J. Paldus, J. Chem. Phys. 119, 5334 (2003)ADSCrossRefGoogle Scholar
  150. 150.
    X. Li, J. Paldus, J. Chem. Phys. 119, 5346 (2003)ADSCrossRefGoogle Scholar
  151. 151.
    J. Paldus, X. Li, N.D.K. Petraco, J. Math. Phys. 35, 215 (2004)MathSciNetMATHGoogle Scholar
  152. 152.
    I. Hubač, in New Methods in Quantum Theory, NATO ASI Series 3: High Technology vol 8, ed by A. Tsipis, V.S. Popov, D.R. Herschbach, J.S. Avery, (Kluwer, Dordrecht, 1996), pp. 183–202Google Scholar
  153. 153.
    J. Mášik, I. Hubač, Adv. Quantum Chem. 31, 75 (1999)CrossRefGoogle Scholar
  154. 154.
    J. Pittner, P. Nachtigall, P. Čársky, J. Mášik, I. Hubač, J. Chem. Phys. 110, 10275 (1999)ADSCrossRefGoogle Scholar
  155. 155.
    J. Pittner, J. Chem. Phys. 118, 10876 (2003)ADSCrossRefGoogle Scholar
  156. 156.
    J. Pittner, X. Li, J. Paldus, Mol. Phys. 103, 2239 (2005)ADSCrossRefGoogle Scholar
  157. 157.
    J. Pittner, O. Demel, J. Chem. Phys. 122, 181101 (2005)ADSCrossRefGoogle Scholar
  158. 158.
    O. Demel, J. Pittner, J. Chem. Phys. 128, 104108 (2008)ADSCrossRefGoogle Scholar
  159. 159.
    U.S. Mahapatra, B. Datta, D. Mukherjee, Mol. Phys. 94, 157 (1998)ADSGoogle Scholar
  160. 160.
    U.S. Mahapatra, B. Datta, D. Mukherjee, Adv. Quantum Chem. 30, 163 (1998)ADSCrossRefGoogle Scholar
  161. 161.
    U.S. Mahapatra, B. Datta, D. Mukherjee, J. Chem. Phys. 110, 6171 (1999)ADSCrossRefGoogle Scholar
  162. 162.
    F.A. Evangelista, W.D. Allen, H.F. Schaefer III, J. Chem. Phys. 127, 024102 (2007)ADSCrossRefGoogle Scholar
  163. 163.
    F.A. Evangelista, A.C. Simmonett, W.D. Allen, H.F. Schaefer III, J. Gauss, J. Chem. Phys. 128, 124104 (2008)ADSCrossRefGoogle Scholar
  164. 164.
    S. Das, D. Mukherjee, M. Kállay, J. Chem. Phys. 132, 074103 (2010)ADSCrossRefGoogle Scholar
  165. 165.
    K. Bhaskaran-Nair, O. Demel, J. Pittner, J. Chem. Phys. 132, 154105 (2010)ADSCrossRefGoogle Scholar
  166. 166.
    M. Hanrath, J. Chem. Phys. 123, 084102 (2005)ADSCrossRefGoogle Scholar
  167. 167.
    M. Hanrath, Chem. Phys. Lett. 420, 426 (2006)ADSCrossRefGoogle Scholar
  168. 168.
    M. Hanrath, Theoret. Chem. Acc. 121, 187 (2008)CrossRefGoogle Scholar
  169. 169.
    U.S. Mahapatra, S. Chattopadhyay, J. Chem. Phys. 133, 074102 (2010)ADSCrossRefGoogle Scholar
  170. 170.
    L. Kong, Int. J. Quantum Chem. 109, 441 (2009)ADSCrossRefGoogle Scholar
  171. 171.
    A. Balková, R.J. Bartlett, J. Chem. Phys. 101, 8972 (1994)ADSCrossRefGoogle Scholar
  172. 172.
    X. Li, J. Paldus, J. Chem. Phys. 124, 034112 (2006)ADSCrossRefGoogle Scholar
  173. 173.
    O. Demel, J. Pittner, J. Chem. Phys. 124, 144112 (2006)ADSCrossRefGoogle Scholar
  174. 174.
    K. Bhaskaran-Nair, O. Demel, J. Pittner, J. Chem. Phys. 129, 184105 (2008)ADSCrossRefGoogle Scholar
  175. 175.
    O. Demel, K. Bhaskaran-Nair, J. Pittner, J. Chem. Phys. 133, 134106 (2010)ADSCrossRefGoogle Scholar
  176. 176.
    K. Bhaskaran-Nair, O. Demel, J. Smydke, J. Pittner, J. Chem. Phys. 134, 154106 (2011)CrossRefGoogle Scholar
  177. 177.
    K. Kowalski, P. Piecuch, J. Mol. Struct. (Thoechem) 547, 191 (2001)Google Scholar
  178. 178.
    K. Kowalski, P. Piecuch, Mol. Phys. 102, 2425 (2004)ADSCrossRefGoogle Scholar
  179. 179.
    J. Pittner, P. Piecuch, Mol. Phys. 107, 1209 (2009)ADSCrossRefGoogle Scholar
  180. 180.
    F.A. Evangelista, E. Prochnow, J. Gauss, H.F. Schaefer III, J. Chem. Phys. 132, 074107 (2010)ADSCrossRefGoogle Scholar
  181. 181.
    K. Kowalski, J. Chem. Phys. 134, 194107 (2011)ADSCrossRefGoogle Scholar
  182. 182.
    J. Brabec, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 136, 124102 (2012)ADSCrossRefGoogle Scholar
  183. 183.
    W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)ADSCrossRefGoogle Scholar
  184. 184.
    J. Brabec, J. Pittner, H.J.J. van Dam, E. Aprà, K. Kowalski, J. Chem. Theory Comput. 8, 487 (2012)CrossRefGoogle Scholar
  185. 185.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz et al., J. Comput. Chem. 14(1993), 1347 (1993)CrossRefGoogle Scholar
  186. 186.
    H.-J. Werner, P.J. Knowles, R. Lindh, et al., MOLPRO is a package of ab initio programsGoogle Scholar
  187. 187.
    J. Baker, K. Wolinski, M. Malagoli et al., J. Comput. Chem. 30, 317 (2009)CrossRefGoogle Scholar
  188. 188.
    J.R. Hammond, K. Kowalski, W.A. de Jong, J. Chem. Phys. 127, 144105 (2007)ADSCrossRefGoogle Scholar
  189. 189.
    K. Kowalski, J.R. Hammond, W.A. de Jong, A.J. Sadlej, J. Chem. Phys. 129, 226101 (2008)ADSCrossRefGoogle Scholar
  190. 190.
    K. Kowalski, R.M. Olson, S. Krishnamoorthy, V. Tipparaju, E. Aprà, J. Chem. Theory Comput. 7, 2200 (2011)CrossRefGoogle Scholar
  191. 191.
    W. Förner, R. Knab, J. Čížek, J. Ladik, J. Chem. Phys. 106, 10248 (1997)CrossRefGoogle Scholar
  192. 192.
    M. Yu, S. Kalvoda, M. Dolg, Chem. Phys. 224, 121 (1997)CrossRefGoogle Scholar
  193. 193.
    P. Reinhardt, Theoret. Chem. Acc. 104, 426 (2000)CrossRefGoogle Scholar
  194. 194.
    S. Hirata, R. Podeszwa, M. Tobita, R.J. Bartlett, J. Chem. Phys. 120, 2581 (2004)ADSCrossRefGoogle Scholar
  195. 195.
    H.-J. Werner, M. Schütz, J. Chem. Phys. 135, 144116 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karol Kowalski
    • 1
  • Kiran Bhaskaran-Nair
    • 1
  • Jiří Brabec
    • 2
  • Jiří Pittner
    • 2
  1. 1.William R. Wiley Environmental Molecular Sciences Laboratory, BattellePacific Northwest National LaboratoryWashingtonUSA
  2. 2.J.Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations