Advertisement

Complex Analogies: Remarks on the Complexity of HDTP

  • Robert Robere
  • Tarek Richard Besold
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7691)

Abstract

After an introduction to Heuristic-Driven Theory Projection (HDTP) as framework for computational analogy-making, and a compact primer on parametrized complexity theory, we provide a complexity analysis of the key mechanisms underlying HDTP, together with a short discussion of and reflection on the obtained results. Amongst others, we show that restricted higher-order anti-unification as currently used in HDTP is W[1]-hard (and thus NP-hard) already for quite simple cases. Also, we obtain W[2]-hardness, and NP-completeness, for the original mechanism used for reducing second-order to first-order anti-unifications in the basic version of the HDTP system.

Keywords

Function Symbol Equational Theory Complex Analogy Cognitive Science Society Input Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwering, A., Kühnberger, K.U., Kokinov, B.: Analogies: Integrating multiple cognitive abilities - guest editorial. Journal of Cognitive Systems Research 10 (2009)Google Scholar
  2. 2.
    Reitman, W.R., Grove, R.B., Shoup, R.G.: Argus: An information-processing model of thinking. Behavioral Science 9, 270–281 (1964)CrossRefGoogle Scholar
  3. 3.
    Evans, T.G.: A heuristic program to solve geometric-analogy problems. In: Proceedings of the Spring Joint Computer Conference, AFIPS 1964, April 21-23, pp. 327–338. ACM, New York (Spring 1964)Google Scholar
  4. 4.
    Hofstadter, D., Mitchell, M.: The Copycat project: a model of mental fluidity and analogy-making. In: Advances in Connectionist and Neural Computation Theory. Analogical Connections, vol. 2, pp. 31–112. Ablex, New York (1994)Google Scholar
  5. 5.
    Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Algorithm and examples. Artificial Intelligence 41, 1–63 (1989)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gentner, D., Forbus, K.D.: MAC/FAC: A Model of Similarity-based Retrieval. Cognitive Science 19, 141–205 (1991)Google Scholar
  7. 7.
    Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7, 155–170 (1983)CrossRefGoogle Scholar
  8. 8.
    Gust, H., Kühnberger, K.U., Schmid, U.: Metaphors and Heuristic–Driven Theory Projection (HDTP). Theoretical Computer Science 354, 98–117 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Schwering, A., Krumnack, U., Kühnberger, K.U., Gust, H.: Syntactic principles of Heuristic-Driven Theory Projection. Journal of Cognitive Systems Research 10(3), 251–269 (2009)CrossRefGoogle Scholar
  10. 10.
    Guhe, M., Pease, A., Smaill, A., Schmidt, M., Gust, H., Kühnberger, K.U., Krumnack, U.: Mathematical reasoning with higher-order anti-unifcation. In: Proceedings of the 32st Annual Conference of the Cognitive Science Society, pp. 1992–1997 (2010)Google Scholar
  11. 11.
    Guhe, M., Pease, A., Smaill, A., Martinez, M., Schmidt, M., Gust, H., Kühnberger, K.U., Krumnack, U.: A computational account of conceptual blending in basic mathematics. A computational account of conceptual blending in basic mathematics. Journal of Cognitive Systems Research 12(3), 249–265 (2011)Google Scholar
  12. 12.
    Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)MathSciNetGoogle Scholar
  13. 13.
    Plotkin, G.D.: A further note in inductive generalization. Machine Intelligence 6, 101–124 (1971)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krumnack, U., Schwering, A., Gust, H., Kühnberger, K.: Restricted Higher-Order Anti-Unification for Analogy Making. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 273–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Schmidt, M., Gust, H., Kühnberger, K.U., Krumnack, U.: Refinements of restricted higher-order anit-unification for heuristic-driven theory projection. In: Proceedings 34th Annual German Conference on Artificial Intelligence, Springer (2011)Google Scholar
  16. 16.
    Schwering, A., Gust, H., Kühnberger, K.U.: Solving geometric analogies with the analogy model hdtp. In: Taaten, N.A., van Rijn, H. (eds.) Proceedings of the 31st Annual Meeting of the Cognitive Science Society, pp. 1780–1785. Cognitive Science Society, Austin (2009)Google Scholar
  17. 17.
    Besold, T.R., Gust, H., Krumnack, U., Abdel-Fattah, A., Schmidt, M., Kühnberger, K.U.: An argument for an analogical perspective on rationality & decision-making. In: van Eijck, J., Verbrugge, R. (eds.) Proceedings of the Workshop on Reasoning About Other Minds: Logical and Cognitive Perspectives (RAOM 2011). CEUR Workshop Proceedings, Groningen, The Netherlands, vol. 751, pp. 20–31 (2011) CEUR-WS.orgGoogle Scholar
  18. 18.
    Martinez, M., Besold, T.R., Abdel-Fattah, A., Kühnberger, K.U., Gust, H., Schmidt, M., Krumnack, U.: Towards a Domain-Independent Computational Framework for Theory Blending. In: AAAI Technical Report of the AAAI Fall 2011 Symposium on Advances in Cognitive Systems, pp. 210–217 (2011)Google Scholar
  19. 19.
    Martinez, M., Besold, T.R., Abdel-Fattah, A., Gust, H., Schmidt, M., Krumnack, U., Kühnberger, K.U.: Theory Blending as a Framework for Creativity in Systems for General Intelligence. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of AGI. Atlantis Press (in press, 2012)Google Scholar
  20. 20.
    Jörg Flum, M.G.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  21. 21.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  22. 22.
    Kuper, G.M., McAloon, K.W., Palem, K.V., Perry, K.J.: Efficient parallel algorithms for anti-unification and relative complement (1988)Google Scholar
  23. 23.
    Cesati, M.: Compendium of parameterized problems, http://www.sprg.uniroma2.it/home/cesati/research/compendium/
  24. 24.
    van Rooij, I.: The tractable cognition thesis. Cognitive Science 32, 939–984 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Robere
    • 1
  • Tarek Richard Besold
    • 2
  1. 1.University of TorontoCanada
  2. 2.Institute of Cognitive ScienceUniversity of OsnabrückGermany

Personalised recommendations