Recent Applications in Representer-Based Variational Data Assimilation

  • Boon S. Chua
  • Edward D. Zaron
  • Liang Xu
  • Nancy L. Baker
  • Tom Rosmond
Chapter

Abstract

Data assimilation with representer-based algorithms (also called “dual space” algorithms) are currently being used for weak-constraint four-dimensional variational data assimilation (W4D-Var) atmospheric prediction, distributed parameter estimation, and other hydrodynamic data assimilation problems. The iterative linear solvers at the core of these systems may display non-monotonic convergence in the norm defined by the primal objective function, and this behavior makes problematic the development of practical stopping criteria. One approach to this problem is described, namely an implementation of the inner solver using the generalized conjugate residual(GCR) algorithm. Additional elements of data assimilation systems are error model for the background, model forcings, and observations. An implementation of a posterior analysis method for diagnosing the error variances is described, and representative results from an atmospheric data assimilation systems are shown.

Notes

Acknowledgements

Zaron was sponsored by the National Science Foundation (NSF), award OCE-0623540, with additional support from the Naval Research Laboratory, award N00173-08-2-C015. Authors Chua, Xu, Baker, and Rosmond gratefully acknowledge the support of their sponsors, the Naval Research Laboratory, the Office of Naval Research, and the PMW-120, under program elements, 0602435N and 0603207N, respectively. Computational resources for Zaron were provided by the National Center for Atmospheric Research, which is sponsored by NSF.

References

  1. Bennett AF (1985) Array design by inverse methods. Prog Oceanogr 15:129–156CrossRefGoogle Scholar
  2. Bennett AF (1992) Inverse methods in physical oceanography, 1st edn. Cambridge University Press, New York, 346pCrossRefGoogle Scholar
  3. Bennett AF (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, New York, 234pCrossRefGoogle Scholar
  4. Bennett AF, Thorburn MA (1992) The generalized inverse of a nonlinear quasigeostrophic ocean circulation model. J Phys Oceanogr 22:213–230CrossRefGoogle Scholar
  5. Bennett AF, Chua BS, Harrison DE, McPhaden MJ (2000) Generalized inversion of tropical atmosphere–ocean (TAO) data and a coupled model of the tropical ocean. Part II: the 1995–96 La Niña and 1997–98 El Niño. J Climate 13:2770–2785CrossRefGoogle Scholar
  6. Bennett AF, Chua BS, Pflaum BL, Erwig M, Fu Z, Loft RD, Muccino JC (2008) The inverse ocean modeling system. I: implementation. J Atmos Oceanic Technol 25:1608–1622CrossRefGoogle Scholar
  7. Chapnik B, Desroziers G, Rabier F, Talagrand O (2004) Properties and first application of an error-statistics tuning method in variational assimilation. Q J R Meteorol Soc 130:2253–2275CrossRefGoogle Scholar
  8. Chapnik B, Desroziers G, Rabier F, Talagrand O (2006) Diagnosis and tuning of observational error in quasi-operational data assimilation setting. Q J R Meteorol Soc 132:543–565CrossRefGoogle Scholar
  9. Chua B, Bennett AF (2001) An inverse ocean modeling system. Ocean Model 3:137–165CrossRefGoogle Scholar
  10. Cohn SE, Da Silva A, Guo J, Sienkiewicz M, Lamich D (1998) Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon Weather Rev 126:2913–2926CrossRefGoogle Scholar
  11. Courtier P (1997) Dual formulation of four-dimensional assimilation. Q J R Meteorol Soc 123:2449–2461CrossRefGoogle Scholar
  12. Courtier P, Thepaut J, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1387CrossRefGoogle Scholar
  13. Daley R, Barker E (2001) NAVDAS: formulation and diagnostics. Mon Weather Rev 129:869–883CrossRefGoogle Scholar
  14. de Sturler E (1994) Iterative methods on distributed memory computers. PhD thesis, Delft University of Technology, Delft, the NetherlandsGoogle Scholar
  15. de Sturler E (1996) Nested Krylov methods based on GCR. J Comput Appl Math 67:15–41CrossRefGoogle Scholar
  16. Desroziers G, Ivanov S (2001) Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Q J R Meteorol Soc 127:1433–1452CrossRefGoogle Scholar
  17. El Akkraoui A, Gauthier P (2010) Convergence properties of the primal and dual forms of variational data assimilation. Q J R Meteorol Soc 136:107–115CrossRefGoogle Scholar
  18. El Akkraoui A, Gauthier P, Pellerin S, Buis S (2008) Intercomparison of the primal and dual formulations of variational data assimilation. Q J R Meteorol Soc 134:1015–1025CrossRefGoogle Scholar
  19. Girard D (1989) A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy data. Numer Math 56:1–23CrossRefGoogle Scholar
  20. Giraud L, Ruiz D, Touhami A (2006) A comparative study of iterative solvers exploiting spectral information for spd systems. SIAM J Sci Comput 27:1760–1786CrossRefGoogle Scholar
  21. Golub G, Van Loan C (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, Baltimore, 642pGoogle Scholar
  22. Gratton S, Tshimanga J (2009) An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm. Q J R Meteorol Soc 135:1573–1585CrossRefGoogle Scholar
  23. Hogan T, Rosmond T (1991) The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon Weather Rev 119:1786–1815CrossRefGoogle Scholar
  24. Hutchinson MF (1989) A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun Stat Simul Comput 18:1059–1076CrossRefGoogle Scholar
  25. Lorenc A (1986) Analysis methods for numerical weather prediction. Q J R Meteorol Soc 112:117–1194CrossRefGoogle Scholar
  26. Muccino JC, Arango H, Bennett AB, Chua BS, Cornuelle B, DiLorenzo E, Egbert GD, Hao L, Levin J, Moore AM, Zaron ED (2008) The inverse ocean modeling system. II: applications. J Atmos Oceanic Technol 25:1623–1637CrossRefGoogle Scholar
  27. Parks ML, de Sturler E, Mackey G, Johnson DD, Maiti S (2006) Recycling Krylov subspaces for sequences of linear systems. SIAM J Sci Comput 28:1651–1674. doi:10.1137/040607277CrossRefGoogle Scholar
  28. Rosmond T, Xu L (2006) Development of NAVDAS-AR: nonlinear formulation and outer loop tests. Tellus 58A:45–58Google Scholar
  29. Sadiki W, Fischer C (2005) A posteriori validation applied to the 3D-var Arpege and Aladin data assimilation systems. Tellus 57A:21–34Google Scholar
  30. Talagrand O (1999) A posterior verification of analysis and assimilation algorithms. In: Proceedings of a workshop on diagnosis of data assimilation systems, ECMWF, Reading, UKGoogle Scholar
  31. Wahba G, Johnson DR, Gao F, Gong J (1995) Adaptive tuning of numerical weather prediction models: randomized GCV in three- and four-dimensional data assimilation. Mon Weather Rev 123:3358–3369CrossRefGoogle Scholar
  32. Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus 57:546–559CrossRefGoogle Scholar
  33. Zaron ED (2006) A comparison of data assimilation methods using a planetary geostrophic model. Mon Weather Rev 134:1316–1328CrossRefGoogle Scholar
  34. Zaron ED, Chavanne C, Egbert GD, Flament P (2009) Baroclinic tidal generation in the Kauai Channel inferred from HF-Radar. Dyn Atmos Oceans 48:93–120. http://dx.doi.org/10.1016/j.dynatmoce.2009.03.002

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Boon S. Chua
    • 1
    • 2
  • Edward D. Zaron
    • 3
  • Liang Xu
    • 2
  • Nancy L. Baker
    • 2
  • Tom Rosmond
    • 1
  1. 1.SAICMontereyUSA
  2. 2.Marine Meteorology DivisionNaval Research Laboratory MontereyMontereyUSA
  3. 3.Department of Civil and Environmental EngineeringPortland State UniversityPortlandUSA

Personalised recommendations