Advertisement

The Role of Twitter in YouTube Videos Diffusion

  • George Christodoulou
  • Chryssis Georgiou
  • George Pallis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7651)

Abstract

Understanding the effects of social cascading on streaming media is of great importance to Web information system engineering. Given the large amount of available videos, it is often difficult for users to discover interesting content. Relying on the suggestions coming from friends seems to be a popular way to choose what to watch. Taking into account the increasing popularity of Online Social Networks and the growing popularity of streaming media, in this paper we present a detailed analysis of social cascading exchange of YouTube videos among Twitter users. Using a real data set we have recently collected, our analysis highlights several important aspects of social cascading, including its impact on YouTube videos popularity, dependence on users with a large number of followers, the effect of multiple sharing follows and the distribution of cascade duration.

Keywords

Social Video Sharing Social Web Social Cascading YouTube Twitter Internet Measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abhari, A., Soraya, M.: Workload generation for youtube. Multimedia Tools Appl. 46(1), 91–118 (2010)CrossRefGoogle Scholar
  2. 2.
    Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th International Conference on World Wide Web (WWW 2010), pp. 61–70. ACM, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 65–74. ACM, New York (2011)CrossRefGoogle Scholar
  4. 4.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web (WWW 2012), pp. 519–528. ACM, New York (2012)CrossRefGoogle Scholar
  5. 5.
    Borghol, Y., Mitra, S., Ardon, S., Carlsson, N., Eager, D., Mahanti, A.: Characterizing and modelling popularity of user-generated videos. Perform. Eval. 68(11), 1037–1055 (2011)CrossRefGoogle Scholar
  6. 6.
    Brodersen, A., Scellato, S., Wattenhofer, M.: Youtube around the world: geographic popularity of videos. In: Proceedings of the 21st International Conference on World Wide Web (WWW 2012), pp. 241–250. ACM, New York (2012)CrossRefGoogle Scholar
  7. 7.
    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC 2007), San Diego, California, USA, pp. 1–14. ACM (2007)Google Scholar
  8. 8.
    Cha, M., Mislove, A., Adams, B., Gummadi, K.: Characterizing social cascades in flickr. In: Proceedings of the First Workshop on Online Social Networks (WOSN 2008), Seattle, WA, USA, pp. 13–18 (2008)Google Scholar
  9. 9.
    Cheng, X., Dale, C., Liu, J.: In: Proceedings of the 16th International Workshop on Quality of Service (IWQOS 2008), Enskede, The Netherlands, pp. 229–238. IEEE (2008)Google Scholar
  10. 10.
    Datta, A., Dikaiakos, M.D., Haridi, S., Iftode, L.: Infrastructures for online social networking services. IEEE Internet Computing 16, 10–12 (2012)CrossRefGoogle Scholar
  11. 11.
    Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing popularity growth of youtube videos. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 745–754. ACM, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: Youtube everywhere: impact of device and infrastructure synergies on user experience. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (IMC 2011), pp. 345–360. ACM, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Youtube traffic characterization: a view from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC 2007), San Diego, California, USA, pp. 15–28. ACM (2007)Google Scholar
  14. 14.
    Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Characterizing user sessions on youtube. In: Proceedings of the ACM/SPIE Multimedia Computing and Networking Conference (MMCN 2008), San Jose, USA (2008)Google Scholar
  15. 15.
    Goel, S., Hofman, J.M., Sirer, M.I.: Who does what on the web: A large-scale study of browsing behavior. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (June 2012)Google Scholar
  16. 16.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web (WWW 2011), pp. 591–600. ACM, New York (2010)CrossRefGoogle Scholar
  17. 17.
    Mitra, S., Agrawal, M., Yadav, A., Carlsson, N., Eager, D., Mahanti, A.: Characterizing web-based video sharing workloads. ACM Trans. Web 5(2), 8:1–8:27 (2011)Google Scholar
  18. 18.
    Rao, A., Legout, A., Lim, Y.-S., Towsley, D., Barakat, C., Dabbous, W.: Network characteristics of video streaming traffic. In: Proceedings of the 7th Conference on Emerging Networking Experiments and Technologies (CoNEXT 2011), pp. 25:1–25:12. ACM, New York (2011)Google Scholar
  19. 19.
    Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, K., Almeida, V.: On word-of-mouth based discovery of the web. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (IMC 2011), pp. 381–396. ACM, New York (2011)CrossRefGoogle Scholar
  20. 20.
    Romero, D.M., Galuba, W., Asur, S., Huberman, B.A.: Influence and passivity in social media. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 113–114. ACM, New York (2011)CrossRefGoogle Scholar
  21. 21.
    Scellato, S., Mascolo, C., Musolesi, M., Crowcroft, J.: Track globally, deliver locally: improving content delivery networks by tracking geographic social cascades. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 457–466. ACM, New York (2011)CrossRefGoogle Scholar
  22. 22.
    Tang, W., Fu, Y., Cherkasova, L., Vahdat, A.: Medisyn: a synthetic streaming media service workload generator. In: Proceedings of the 13th International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 2003), pp. 12–21. ACM, New York (2003)CrossRefGoogle Scholar
  23. 23.
    Traverso, S., Huguenin, K., Triestan, I., Erramilli, V., Laoutaris, N., Papagiannaki, K.: Tailgate: handling long-tail content with a little help from friends. In: Proceedings of the 21st International Conference on World Wide Web (WWW 2012), pp. 151–160. ACM, New York (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • George Christodoulou
    • 1
  • Chryssis Georgiou
    • 1
  • George Pallis
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusCyprus

Personalised recommendations