Advertisement

From Above-Threshold Photoemission to Attosecond Physics at Nanometric Tungsten Tips

  • M. Krüger
  • M. Schenk
  • J. Breuer
  • M. Förster
  • J. Hammer
  • J. Hoffrogge
  • S. Thomas
  • P. Hommelhoff
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 104)

Abstract

The interaction of few-cycle laser pulses with a nanometric metal tip is described. We find many effects that the strong-field physics community has discovered with atoms in the last 30 years, and describe them here in experiments with solid nanotips. Starting with a clear identification of several photon orders in above-threshold photoemission, via strong-field effects such as peak shifting and peak suppression, to the observation of a pronounced plateau in electron spectra, we show that we have reached the level of control necessary for attosecond physics experiments. In particular, we observe electronic wavepacket dynamics on the attosecond time scale. Namely, by variation of the carrier-envelope phase of the driving laser pulses, we observe a qualitative change in the electron spectra: For cosine pulses we obtain an almost flat plateau part, whereas for minus-cosine pulses the plateau part clearly shows photon orders. We interpret this change by the occurrence of a single or a double slit configuration in time causing electronic matter wave interference in the time-energy domain.

Keywords

Laser Field Field Enhancement Factor Effective Barrier Height Ponderomotive Energy Matter Wave Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Spence, High-Resolution Electron Microscopy. Monographs on the Physics and Chemistry of Materials (Oxford University Press, Oxford, 2009) Google Scholar
  2. 2.
    R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Phys. Rev. Lett. 102, 096101 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    J. Hoffrogge, R. Fröhlich, M.A. Kasevich, P. Hommelhoff, Phys. Rev. Lett. 106, 193001 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    T. Plettner, P.P. Lu, R.L. Byer, Phys. Rev. Spec. Top., Accel. Beams 9, 111301 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    T. Plettner, R.L. Byer, C. McGuinness, P. Hommelhoff, Phys. Rev. Spec. Top., Accel. Beams 12, 101302 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    P.B. Corkum, F. Krausz, Nat. Phys. 3(6), 381 (2007) CrossRefGoogle Scholar
  7. 7.
    H. Niikura, F. Légáre, R. Hasbani, A.D. Bandrauk, M.Y. Ivanov, D.M. Villeneuve, P.B. Corkum, Nature 417, 917 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirila, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312(5772), 424 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic/Plenum, New York, 2005) Google Scholar
  10. 10.
    T.T. Tsong, Atom-Probe Field Ion Microscopy (Cambridge University Press, Cambridge, 1990) CrossRefGoogle Scholar
  11. 11.
    E.W. Müller, K. Bahadur, Phys. Rev. 102, 624 (1956) ADSCrossRefGoogle Scholar
  12. 12.
    J. Hoffrogge, J.P. Stein et al., to be published Google Scholar
  13. 13.
    S. Thomas, M. Krüger, M. Förster, M. Schenk, P. Hommelhoff. arXiv:1209.5195 (2012, submitted for publication)
  14. 14.
    S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, S. Kim, Nature 453(7196), 757 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    C. Ropers, D.R. Solli, C.P. Schulz, C. Lienau, T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    R. Ganter, R. Bakker, C. Gough, S.C. Leemann, M. Paraliev, M. Pedrozzi, F. Le Pimpec, V. Schlott, L. Rivkin, A. Wrulich, Phys. Rev. Lett. 100(6), 064801 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    S. Tsujino, F. le Pimpec, J. Raabe, M. Buess, M. Dehler, E. Kirk, J. Gobrecht, A. Wrulich, Appl. Phys. Lett. 94(9), 093508 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105(25), 257601 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    M. Schenk, M. Krüger, P. Hommelhoff, in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), 2011 (2011), pp. 404–406 Google Scholar
  22. 22.
    M. Krüger, M. Schenk, P. Hommelhoff, Nature 475(7354), 78 (2011) CrossRefGoogle Scholar
  23. 23.
    M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B, At. Mol. Opt. Phys. 45, 074006 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    W. Schottky, Phys. Z 15, 872 (1914) Google Scholar
  25. 25.
    P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    G.S. Voronov, N.B. Delone, JETP Lett. 1, 66 (1965) ADSGoogle Scholar
  27. 27.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42(17), 1127 (1979) ADSCrossRefGoogle Scholar
  28. 28.
    G. Farkas, C. Tóth, A. Kőházi-Kis, Opt. Eng. 32(10), 2476 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    M. Aeschlimann, C.A. Schmuttenmaer, H.E. Elsayed-Ali, R.J.D. Miller, J. Cao, Y. Gao, D.A. Mantell, J. Chem. Phys. 102(21), 8606 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    N.B. Delone, V.P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, 1994) CrossRefGoogle Scholar
  31. 31.
    P.H. Bucksbaum, R.R. Freeman, M. Bashkansky, T.J. McIlrath, J. Opt. Soc. Am. B 4(5), 760 (1987) ADSCrossRefGoogle Scholar
  32. 32.
    N.E. Christensen, B. Feuerbacher, Phys. Rev. B 10, 2349 (1974) ADSCrossRefGoogle Scholar
  33. 33.
    G. Saathoff, L. Miaja-Avila, M. Aeschlimann, M.M. Murnane, H.C. Kapteyn, Phys. Rev. A 77(2), 022903 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    G.G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, H. Walther, Phys. Rev. Lett. 72, 2851 (1994) ADSCrossRefGoogle Scholar
  35. 35.
    G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, ArXiv e-prints 1201.0462 (2012)
  36. 36.
    F.H.M. Faisal, J.Z. Kamiński, E. Saczuk, Phys. Rev. A 72(2), 023412 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) ADSCrossRefGoogle Scholar
  38. 38.
    H.W. Fink, Phys. Scr. 38, 260 (1988) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, Phys. Rev. B 64(11), 113401 (2001) ADSCrossRefGoogle Scholar
  40. 40.
    H.S. Kuo, I.S. Hwang, T.Y. Fu, J.Y. Wu, C.C. Chang, T.T. Tsong, Nano Lett. 4(12), 2379 (2004) ADSCrossRefGoogle Scholar
  41. 41.
    C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, Nanotechnology 20, 115401 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y.R. Sortais, S.M. Foreman, M.A. Kasevich, Ultramicroscopy 109(5), 423 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Krüger
    • 1
  • M. Schenk
    • 1
  • J. Breuer
    • 1
  • M. Förster
    • 1
  • J. Hammer
    • 1
  • J. Hoffrogge
    • 1
  • S. Thomas
    • 1
  • P. Hommelhoff
    • 1
  1. 1.Ultrafast Quantum Optics GroupMax-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations