Dependable MAC Layer Architecture Based on Holographic Data Representation Using Hyper-Dimensional Binary Spatter Codes

  • Denis Kleyko
  • Nikita Lyamin
  • Evgeny Osipov
  • Laurynas Riliskis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7642)


In this article we propose the usage of binary spatter codes and distributed data representation for communicating loss and delay sensitive data in event-driven sensor and actuator networks. Using the proposed data representation technique along with the medium access control protocol the mission critical control information can be transmitted with assured constant delay in deployments exposing below 0 dB signal-to-noise ratio figures.


Hyperdimensional computing reliable communications binary spatter codes distributed representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gold, R.: Optimal binary sequences for spread spectrum multiplexing (corresp.). IEEE Transactions on Information Theory 13(4), 619–621 (1967)Google Scholar
  2. 2.
    Kanerva, P.: Sparse distributed memory. Bradford Books (1988)Google Scholar
  3. 3.
    Kanerva, P.: A family of binary spatter codes. In: ICANN 1995: International Conference on Artificial Neural Networks, pp. 517–522 (1995)Google Scholar
  4. 4.
    Kanerva, P.: Binary Spatter-Coding of Ordered K-tuples. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 869–873. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Kanerva, P.: Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors. Cognitive Computation 1(2), 139–159 (2003)Google Scholar
  6. 6.
    Lin, P., Qiao, C., Wang, X.: Medium access control with a dynamic duty cycle for sensor networks. In: 2004 IEEE Wireless Communications and Networking Conference, WCNC, vol. 3, pp. 1534–1539 (March 2004)Google Scholar
  7. 7.
    Plate, T.: A common framework for distributed representation schemes for compositional structure. In: Connectionist Systems for Knowledge Representation and Deduction, pp. 15–34 (1997)Google Scholar
  8. 8.
    Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River (2001)Google Scholar
  9. 9.
    Suarez, P., Renmarker, C.-G., Dunkels, A., Voigt, T.: Increasing zigbee network lifetime with x-mac. In: REALWSN 2008: Proceedings of the Workshop on Real-World Wireless Sensor Networks, pp. 26–30. ACM, New York (2008)Google Scholar
  10. 10.
    Tang, W., Culurciello, E.: A low-power high-speed ultra-wideband pulse radio transmission system. IEEE Transactions on Biomedical Circuits and Systems 3(5), 286–292 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Denis Kleyko
    • 1
  • Nikita Lyamin
    • 1
  • Evgeny Osipov
    • 2
  • Laurynas Riliskis
    • 2
  1. 1.Siberian State University of Telecommunications and Information SciencesNovosibirskRussia
  2. 2.Department of Computer Science Electrical and Space EngineeringLuleå University of TechnologyLuleåSweden

Personalised recommendations