Advertisement

Signature Schemes Secure against Hard-to-Invert Leakage

  • Sebastian Faust
  • Carmit Hazay
  • Jesper Buus Nielsen
  • Peter Sebastian Nordholt
  • Angela Zottarel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7658)

Abstract

In the auxiliary input model an adversary is allowed to see a computationally hard-to-invert function of the secret key. The auxiliary input model weakens the bounded leakage assumption commonly made in leakage resilient cryptography as the hard-to-invert function may information-theoretically reveal the entire secret key. In this work, we propose the first constructions of digital signature schemes that are secure in the auxiliary input model. Our main contribution is a digital signature scheme that is secure against chosen message attacks when given an exponentially hard-to-invert function of the secret key. As a second contribution, we construct a signature scheme that achieves security for random messages assuming that the adversary is given a polynomial-time hard to invert function. Here, polynomial-hardness is required even when given the entire public-key – so called weak auxiliary input security. We show that such signature schemes readily give us auxiliary input secure identification schemes.

Keywords

Encryption Scheme Signature Scheme Auxiliary Input Digital Signature Scheme Security Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key Encryption under Subgroup Indistinguishability (or: Quadratic Residuosity Strikes Back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Brakerski, Z., Segev, G.: Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 543–560. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520 (2010)Google Scholar
  9. 9.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryptography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)Google Scholar
  11. 11.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302 (2008)Google Scholar
  12. 12.
    Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert leakage. IACR Cryptology ePrint Archive, 45 (2012)Google Scholar
  13. 13.
    Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-Resilient Signatures. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  15. 15.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)Google Scholar
  19. 19.
    Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures Resilient to Continual Leakage on Memory and Computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  24. 24.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)Google Scholar
  25. 25.
    Standaert, F.-X.: Leakage resilient cryptography: a practical overview. Invited Talk at ECRYPT Workshop on Symmetric Encryption, SKEW 2011 (2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Sebastian Faust
    • 1
  • Carmit Hazay
    • 2
  • Jesper Buus Nielsen
    • 1
  • Peter Sebastian Nordholt
    • 1
  • Angela Zottarel
    • 1
  1. 1.Aarhus UniversityDenmark
  2. 2.Computer Engineering DepartmentBar-Ilan UniversityIsrael

Personalised recommendations