Context-Aware Environments for the Internet of Things

  • Valentin Cristea
  • Ciprian Dobre
  • Florin Pop
Part of the Studies in Computational Intelligence book series (SCI, volume 460)


This chapter discusses the challenges, state of the art, and future trends in context aware environments (infrastructure and services) for the Internet of Things, which is defined as a world-wide network of uniquely identified selforganized and intelligent things. Intelligence means primarily the capability of things to be aware of the context in which they operate (time, geographic location, geographic dimension, situation, etc.) and to inter-cooperate with other things in the environment. The Chapter is structured in three sections. The first section, which frames the issues discussed in the rest of the chapter, is a systematic presentation of the most relevant concepts and aspects related to the infrastructure and services for the Internet of Things. The second section presents relevant research works in the infrastructure, and up to date solutions and results regarding the infrastructure and services. The third section presents future trends and research directions in the domain.


Context-Aware Environments Services Collective Intelligence Scalability High-Performance Internet of Things 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cristea, V., Dobre, C., Costan, A., Pop, F.: Middleware and architectures for space-based and situated computing. Int. J. Space-Based and Situated Computing 1(1), 43–58 (2011), doi:10.1504/IJSSC.2011.039106CrossRefGoogle Scholar
  2. 2.
    Dobre, C.: CAPIM: A Platform for Context-Aware Computing. In: 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (2011)Google Scholar
  3. 3.
    Dey, K., Salber, D., Abowd, G.D.: A Context-Based Infrastructure for Smart Environments, GVU Technical Report; GIT-GVU-99-39 (1999),
  4. 4.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007), doi:10.1504/IJAHUC.2007.014070CrossRefGoogle Scholar
  5. 5.
    CERP-IoT – Cluster of European Research Projects on the Internet of Things. In: Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (eds.) Vision and Challenges for Realising the Internet of Things. European Commission - Information Society and Media DG (March 2010)Google Scholar
  6. 6.
    Chen, Helal, S.: A device-centric approach to a safer internet of things. In: Proceedings of the 2011 International Workshop on Networking and Object Memories for the Internet of Things (NoME-IoT 2011), pp. 1–6. ACM, New York (2011), doi:10.1145/2029932.2029934CrossRefGoogle Scholar
  7. 7.
    IEEE Computer Society, IEEE Standard 802.15.4, Web page reference (2011), (accessed on March 2012)
  8. 8.
    Chen, L.-J., Sun, T., Liang, N.-C.: An Evaluation Study of Mobility Support in ZigBee Networks. J. Signal Process. Syst. 59(1), 111–122 (2010), doi:10.1007/s11265-008-0271-xCrossRefGoogle Scholar
  9. 9.
    Quoc, N.D., Kim, D.-S.: Performance evaluation of priority CSMA-CA mechanism on ISA100.11a wireless network. Comput. Stand. Interfaces 34(1), 117–123 (2012), doi:10.1016/j.csi.2011.06.001CrossRefGoogle Scholar
  10. 10.
    Song, J., Han, S., Zhu, X., Mok, A.K., Chen, D., Nixon, M.: A complete wirelessHART network. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys 2008), pp. 381–382. ACM, New York (2008), doi:10.1145/1460412.1460462CrossRefGoogle Scholar
  11. 11.
    Cody-Kenny, B., Guerin, D., Ennis, D., Carbajo, R.S., Huggard, M., Mc Goldrick, C.: Performance evaluation of the 6LoWPAN protocol on MICAz and TelosB motes. In: Proc. of the 4th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks (PM2HW2N 2009), pp. 25–30. ACM, New York (2009), doi:10.1145/1641913.1641917CrossRefGoogle Scholar
  12. 12.
    Charalampos, D., Ilias, M., Philippos, T., Dimitris, L., Gregory, Y.: Patient Fall Detection using Support Vector Machines. In: Artificial Intelligence and Innovations 2007: from Theory to Applications. IFIP International Federation for Information Processing, pp. 147–156 (2007)Google Scholar
  13. 13.
    CASAGRAS EU FP7 Project, RFID and the Inclusive Model for the Internet of Things (2012), (retrieved on March 2012)
  14. 14.
    Haller, S.: Internet of Things: An Integrated Part of the Future Internet, Prague (May 13, 2009), (retrieved on March 2012)
  15. 15.
    Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart Objects as Building Blocks for the Internet of Things. IEEE Internet Computing 14(1), 44–51 (2010), doi:10.1109/MIC.2009.143CrossRefGoogle Scholar
  16. 16.
    Bardram, J.E.: The Java Context Awareness Framework (JCAF) – A Service Infrastructure and Programming Framework for Context-Aware Applications. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 98–115. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Miorandi, D., Carreras, I., Altman, E., Yamamoto, L., Chlamtac, I.: Bio-Inspired Approaches for Autonomic Pervasive Computing Systems. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds.) BIOWIRE 2007. LNCS, vol. 5151, pp. 217–228. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Herrmann, K., et al.: An Emerging Technology for Pervasive Adaptation. In: Proc. of 2nd IEEE Intl. Conf. Self-Adaptive and Self-Organizing Systems Workshop (SASOW 2008), pp. 108–113 (2008)Google Scholar
  19. 19.
    Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situations in conceptual modeling of context. In: EDOCW 2006: Proceedings of the 10th IEEE on International Enterprise Distributed Object Computing Conference Workshops, pp. 6–16. IEEE Computer Society, Hong Kong (2006)CrossRefGoogle Scholar
  20. 20.
    Ye, J., Dobson, S., McKeever, S.: Review: Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing 8(1), 36–66 (2012)CrossRefGoogle Scholar
  21. 21.
    Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006)CrossRefGoogle Scholar
  22. 22.
    Loke, S.W.: Representing and reasoning with situations for context-aware pervasive computing: a logic programming perspective. Knowledge Engineering Review 19(3), 213–233 (2004)CrossRefGoogle Scholar
  23. 23.
    Kalyan, S., Gopalan, V.S.: Hybrid context model based on multilevel situation theory and ontology for contact centers. In: PERCOMW 2005: Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 3–7 (2005)Google Scholar
  24. 24.
    Augusto, J.C., Liu, J., McCullagh, P., Wang, H., Yang, J.-B.: Management of uncertainty and spatio-temporal aspects for monitoring and diagnosis in a smart home. International Journal of Computational Intelligence Systems 1(4), 361–378 (2008)CrossRefGoogle Scholar
  25. 25.
    Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-aware services. Journal of Network and Computer Applications 28(1), 1–18 (2005)CrossRefGoogle Scholar
  26. 26.
    Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: UbiComp 2008: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 10–19. ACM, New York (2008)CrossRefGoogle Scholar
  27. 27.
    Gu, T., Pung, H.K., Zhang, D.Q.: A Bayesian approach for dealing with uncertain contexts. In: Proceedings of Advances in Pervasive Computing, Coexisted with Pervasive 2004, pp. 205–210. Austrian Computer Society (April 2004)Google Scholar
  28. 28.
    van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: UbiComp 2008: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 1–9. ACM, Seoul (September 2008)CrossRefGoogle Scholar
  29. 29.
    Yang, J.-Y., Wang, J.-S., Chen, Y.-P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recognition Letter 29(16), 2213–2220 (2008)CrossRefGoogle Scholar
  30. 30.
    Kanda, T., Glas, D.F., Shiomi, M., Ishiguro, H., Hagita, N.: Who will be the customer?: a social robot that anticipates people’s behavior from their trajectories. In: UbiComp 2008: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 380–389. ACM, Seoul (2008)CrossRefGoogle Scholar
  31. 31.
    Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Commun. ACM 48(3), 49–53 (2005)CrossRefGoogle Scholar
  32. 32.
    INFSO D.4 Networked Enterprise & RFID, INFSO G.2Micro & Nanosystems, Working Group RFID of the ETP EPOSS. Internet of Things in 2020 (2008) Roadmap for the future, Version 1.1 - May 27, 2008. European Commission - Information Society and Media DG (2009)Google Scholar
  33. 33.
    He, J., Zhang, Y., Huang, G., Cao, J.: A Smart Web Service Based on the Context of Things. ACM Transactions on Internet Technology 11(3), Article 13 (January 2012)Google Scholar
  34. 34.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A Survey of Context Modelling and Reasoning Techniques. Preprint submitted to Elsevier (March 27, 2008), (retrieved April 2012)
  35. 35.
    Guinard, D., Karnouskos, S., Savio, D.: Interacting with the SOA-Based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services. IEEE Transactions on Services Computing 3(3), 223–235 (2010)CrossRefGoogle Scholar
  36. 36.
    Castellani, A.P., Gheda, M., Bui, N., Rossi, M., Zorzi, M.: Web Services for the Internet of Things through CoAP and EXI. In: IEEE International Conference on Communications Workshops (ICC), June 5-9, pp. 1–6 (2011)Google Scholar
  37. 37.
    Christensen, H.B.: Using Logic Programming to Detect Activities in Pervasive Healthcare. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 421–436. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    Yau, S.: Hierarchical situation modeling and reasoning for pervasive computing. In: Proc. of IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, SEUS 2006/WCCIA 2006, Tempe, Arizona, US (2006)Google Scholar
  39. 39.
    Thierry, D.: A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory, Classic Works of the Dempster-Shafer Theory of Belief Functions. In: Studies in Fuzziness and Soft Computing, pp. 737–760. Springer, Heidelberg (2008)Google Scholar
  40. 40.
    McKeever, S., Ye, J., Coyle, L., Dobson, S.: Using Dempster-Shafer Theory of Evidence for Situation Inference. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 149–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Sutter, J.D.: Street Bump app detects potholes, tells city officials (2012), (retrieved March 26, 2012)
  42. 42.
    Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Jubert, I.S., Mazura, M., Harrison, M., Eisenhauer, M., Doody, P.: Internet of Things Strategic Research Roadmap. In: Internet of Things - Global Technological and Societal Trends, pp. 9–52. River Publishers (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations