Advertisement

On the Non-malleability of the Fiat-Shamir Transform

  • Sebastian Faust
  • Markulf Kohlweiss
  • Giorgia Azzurra Marson
  • Daniele Venturi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7668)

Abstract

The Fiat-Shamir transform is a well studied paradigm for removing interaction from public-coin protocols. We investigate whether the resulting non-interactive zero-knowledge (NIZK) proof systems also exhibit non-malleability properties that have up to now only been studied for NIZK proof systems in the common reference string model: first, we formally define simulation soundness and a weak form of simulation extraction in the random oracle model (ROM). Second, we show that in the ROM the Fiat-Shamir transform meets these properties under lenient conditions. A consequence of our result is that, in the ROM, we obtain truly efficient non malleable NIZK proof systems essentially for free. Our definitions are sufficient for instantiating the Naor-Yung paradigm for CCA2-secure encryption, as well as a generic construction for signature schemes from hard relations and simulation-extractable NIZK proof systems. These two constructions are interesting as the former preserves both the leakage resilience and key-dependent message security of the underlying CPA-secure encryption scheme, while the latter lifts the leakage resilience of the hard relation to the leakage resilience of the resulting signature scheme.

Keywords

Encryption Scheme Signature Scheme Proof System Random Oracle Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From Identification to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: Necessary and sufficient conditions for security and forward-security. IEEE Transactions on Information Theory 54(8), 3631–3646 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: ACM Conference on Computer and Communications Security, pp. 390–399 (2006)Google Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  8. 8.
    Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions for private ballot submission. Cryptology ePrint Archive, Report 2012/236 (2012), http://eprint.iacr.org/
  9. 9.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC, pp. 103–112 (1988)Google Scholar
  10. 10.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme Secure against Key Dependent Chosen Plaintext and Adaptive Chosen Ciphertext Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Chase, M., Lysyanskaya, A.: On Signatures of Knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Damgård, I.: On Σ-protocols (2002), http://www.daimi.au.dk/~ivan/Sigma.ps
  18. 18.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryptography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the Fiat-Shamir transform. Cryptology ePrint Archive (2012), http://eprint.iacr.org/
  21. 21.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  22. 22.
    Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowledge with Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Fouque, P.-A., Pointcheval, D.: Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 351–368. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. J. Cryptology 19(2), 169–209 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptology 7(1), 1–32 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: STOC, pp. 59–68 (1986)Google Scholar
  28. 28.
    Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Halevi, S., Micali, S.: More on proofs of knowledge. Cryptology ePrint Archive, Report 1998/015 (1998), http://eprint.iacr.org/
  31. 31.
    Jain, A., Pandey, O.: Non-malleable zero knowledge: Black-box constructions and definitional relationships. Cryptology ePrint Archive, Report 2011/513 (2011), http://eprint.iacr.org/
  32. 32.
    Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)Google Scholar
  35. 35.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  36. 36.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  37. 37.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar
  38. 38.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    Unruh, D.: Quantum proofs of knowledge. To appear in CRYPTO (2012)Google Scholar
  40. 40.
    Wee, H.: Zero Knowledge in the Random Oracle Model, Revisited. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Faust
    • 1
  • Markulf Kohlweiss
    • 2
  • Giorgia Azzurra Marson
    • 3
  • Daniele Venturi
    • 1
  1. 1.Aarhus UniversityDenmark
  2. 2.Microsoft ResearchUSA
  3. 3.Technische Universität DarmstadtGermany

Personalised recommendations