Fuzzy Answer Set Programming: An Introduction

  • Marjon Blondeel
  • Steven Schockaert
  • Dirk Vermeir
  • Martine De Cock

Abstract

In this chapter, we present a tutorial about fuzzy answer set programming (FASP); we give a gentle introduction to its basic ideas and definitions. FASP is a combination of answer set programming and fuzzy logics which has recently been proposed. From the answer set semantics, FASP inherits the declarative nonmonotonic reasoning capabilities, while fuzzy logic adds the power to model continuous problems. FASP can be tailored towards different applications since fuzzy logics gives a great flexibility, e.g. by the possibility to use different generalizations of the classical connectives. In this chapter, we consider a rather general form of FASP programs; the connectives can in principal be interpreted by arbitrary [0,1]n → [0,1]-mappings. Despite that very general connectives are allowed, the presented framework turns out to be an intuitive extension of answer set programming.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  2. 2.
    Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 19, 73–148 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baral, C., Gelfond, M., Rushton, J.: Probabilistic reasoning in computer science. In: 7th International Conference on Logic Programming and Nonmonotonic Reasoning, pp. 21–33 (2004)Google Scholar
  4. 4.
    Blondeel, M., Schockaert, S., De Cock, M., Vermeir, D.: Complexity of fuzzy answer set programming under łukasiewicz semantics: First results. Poster Proceedings of the Fifth International Conference on Scalable Uncertainty Management, pp. 7–12 (2011)Google Scholar
  5. 5.
    Blondeel, M., Schockaert, S., De Cock, M., Vermeir, D.: Fuzzy Autoepistemic Logic: Reflecting about Knowledge of Truth Degrees. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 616–627. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ciabattoni, A., Luchi, D.: Two Connections Between Linear Logic and łukasiewicz Logics. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289, pp. 128–139. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Viegas Damásio, C., Moniz Pereira, L.: Antitonic Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–392. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Annals of Mathematics and Artificial Intelligence 32(1-4), 35–66 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)Google Scholar
  10. 10.
    Hähnle, R.: Proof theory of many-valued logic - linear optimization - logic design: connections and interactions. Soft Computing 1, 107–119 (1997)CrossRefGoogle Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic (1998)Google Scholar
  12. 12.
    Janssen, J.: Foundations of fuzzy answer set programming. PhD thesis, Ghent University and Vrije Universiteit Brussel (2011)Google Scholar
  13. 13.
    Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: General Fuzzy Answer Set Programs. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 352–359. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Lifschitz, V., Schwarz, G.: Extended logic programs as autoepistemic theories. In: Proceedings of the Second International Workshop on Logic Programming and Nonmonotonic Reasoning, pp. 101–114 (1993)Google Scholar
  15. 15.
    Lukasiewicz, T., Straccia, U.: Tightly Integrated Fuzzy Description Logic Programs Under the Answer Set Semantics for the Semantic Web. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    McNaughton, R.: A theorem about infinite-valued sentential logic. The Journal of Symbolic Logic 16(1) (1951)Google Scholar
  17. 17.
    Moore, R.: Semantical considerations on nonmonotonic logic. In: Proceedings of the Eight International Joint Conference on Artificial Intelligence, pp. 272–279 (1983)Google Scholar
  18. 18.
    Nicolas, P., Garcia, L., Stéphan, I., Lefèvre, C.: Possibilistic uncertainty handling for answer set programming. Annals of Mathematics and Artificial Intelligence 47(1-2), 139–181 (2006)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Pearce, D.: A New Logical Characterisation of Stable Models and Answer Sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Schockaert, S., Janssen, J., Vermeir, D., De Cock, M.: Answer Sets in a Fuzzy Equilibrium Logic. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 135–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2006)Google Scholar
  23. 23.
    Straccia, U., Ojeda-Aciego, M., Damásio, C.V.: On fixed-points of multi-valued functions on complete lattices and their application to generalized logic programs. SIAM Journal on Computing 5, 1881–1911 (2009)CrossRefGoogle Scholar
  24. 24.
    Van Nieuwenborgh, D.: Preferences in Answer Set Programming. PhD thesis, Vrije Universiteit Brussel (2005)Google Scholar
  25. 25.
    Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–388 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Yu, L., Wang, N., Meng, X.: Real-time forest fire detection with wireless sensor networks. In: Proceedings of the Wireless Communication Networking and Mobile Computing International Conference, pp. 1214–1217 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marjon Blondeel
    • 1
  • Steven Schockaert
    • 2
  • Dirk Vermeir
    • 1
  • Martine De Cock
    • 3
  1. 1.Department of Computer ScienceVrije Universiteit BrusselBrusselBelgium
  2. 2.School of Computer Science and InformaticsCardiff UniversityCardiffUK
  3. 3.Department of Applied Mathematics and Computer ScienceUniversiteit GentGentBelgium

Personalised recommendations