Advertisement

Gossamer Roadmap Technology Reference Study for a Multiple NEO Rendezvous Mission

  • Bernd DachwaldEmail author
  • Hermann Boehnhardt
  • Ulrich Broj
  • Ulrich R. M. E. Geppert
  • Jan-Thimo Grundmann
  • Wolfgang Seboldt
  • Patric Seefeldt
  • Peter Spietz
  • Les Johnson
  • Ekkehard Kührt
  • Stefano Mottola
  • Malcolm Macdonald
  • Colin R. McInnes
  • Massimiliano Vasile
  • Ruedeger Reinhard
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented.

Keywords

Solar Radiation Pressure Solar Sail Characteristic Acceleration Hazardous Object Electric Propulsion System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Bernd Dachwald and Ulrich Broj thank Andreas Ohndorf for his 24/7 support in optimizing the InTrance trajectory optimization work that has been done for this paper.

References

  1. 1.
    R.P. Binzel, D. F. Lupishko, M. Di Martino, R. J. Whiteley, and G. J. Hahn. Physical properties of near-Earth objects. In W. F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, editors, Asteroids III, pages 255–271. The University of Arizona Press, Tucson, USA, 2002.Google Scholar
  2. 2.
    M. R. Rampino and B. M. Haggerty. Extraterrestrial impacts and mass extinctions of life. In T. Gehrels, editor, Hazards Due to Comets and Asteroids, pages 827–857. The University of Arizona Press, Tucson, USA, 1994.Google Scholar
  3. 3.
    P. D. Ward and D. Brownlee. Rare Earth. Why Complex Life Is Uncommon in the Universe. Copernicus, New York, 2000.Google Scholar
  4. 4.
    D. Morrison, C. R. Chapman, and P. Slovic. The impact hazard. In T. Gehrels, editor, Hazards Due to Comets and Asteroids, pages 59–91. The University of Arizona Press, Tucson, USA, 1994.Google Scholar
  5. 5.
    J. G. Hills, I. V. Nemchinov, S.P. Popov, and A. V. Teterev. Tsunami generated by small asteroid impacts. In T. Gehrels, editor, Hazards Due to Comets and Asteroids, pages 779–789. The University of Arizona Press, Tucson, USA, 1994.Google Scholar
  6. 6.
    W. F. Bottke, M. C. Nolan, R. Greenberg, and R. A. Kolvoord. Collisional lifetimes and impact statistics of near-Earth asteroids. In T. Gehrels, editor, Hazards Due to Comets and Asteroids, pages 337–357. The University of Arizona Press, Tucson, USA, 1994.Google Scholar
  7. 7.
    B. Gladman, P. Michel, and C. Froeschle. The near-Earth object population. Icarus, 146(1):176–189, 2000.Google Scholar
  8. 8.
    I. de Pater and J. J. Lissauer. Planetary Sciences. Cambridge University Press, Cambridge, New York, Melbourne, 2001.Google Scholar
  9. 9.
    B. Dachwald. Low-Thrust Trajectory Optimization and Interplanetary Mission Analysis Using Evo-lutionary Neurocontrol. Doctoral thesis, Universität der Bundeswehr München; Fakultät für Luftund Raumfahrttechnik, Neubiberg, Germany, 2004.Google Scholar
  10. 10.
    E. K. Jessberger, W. Seboldt, K.-H. Glassmeier, G. Neukum, M. Pätzold, G. Arnold, H.-U. Auster, D. deNiem, F. Guckenbiehl, B. Häusler, G. Hahn, N. Hanowski, A. Harris, H. Hirsch, E. Kührt, M. Leipold, E. Lorenz, H. Michaelis, D. Möhlmann, S. Mottola, D. Neuhaus, H. Palme, H. Rauer, M. Rezazad, L. Richter, D. Stöffler, R. Willnecker, J. Brückner, G. Klingelhöfer, and T. Spohn. ENEAS – exploration of near-Earth asteroids with a sailcraft. Technical report, August 2000. Proposal for a Small Satellite Mission within the Space Sciences Program of DLR.Google Scholar
  11. 11.
    B. Dachwald and W. Seboldt. Multiple near-Earth asteroid rendezvous and sample return using first generation solar sailcraft. Acta Astronautica, 57(11):864–875, 2005.Google Scholar
  12. 12.
    U. Geppert, B. Biering, F. Lura, J. Block, M. Straubel, and R. Reinhard. The 3-step DLR/ESA Gossamer road to solar sailing. Advances in Space Research, 48(11):1695–1701, 2011.Google Scholar
  13. 13.
    W. Seboldt, M. Leipold, M. Rezazad, L. Herbeck, W. Unkenbold, D. Kassing, and M. Eiden. Groundbased demonstration of solar sail technology. Rio de Janeiro, Brazil, 2000. 51st International Astronautical Congress. IAF-00-S.6.11.Google Scholar
  14. 14.
    L. Johnson, L. Alexander, L. Fabisinski, A. Heaton, J. Miernik, R. Stough, R. Wright, and R. Young. Multiple NEO rendezvous using solar sail propulsion. Washington, USA, May 2012. Global Space Exploration Conference. Paper GLEX-2012.06.2.5x12192.Google Scholar
  15. 15.
    C. R. McInnes, V. Bothmer, B. Dachwald, U. R. M.E. Geppert, J. Heiligers, A. Hilgers, L. Johnson, M. Macdonald, R. Reinhard, W. Seboldt, and P. Spietz. Gossamer technology reference study for a sub-L1 space weather mission. Glasgow, UK, June 2013. 3rd International Symposium on Solar Sailing.Google Scholar
  16. 16.
    M. Macdonald, C. McGrath, T. Appourchaux, B. Dachwald, W. Finsterle, L. Gizon, P. C. Liewer, C. R. McInnes, G. Mengali, W. Seboldt, T. Sekii, S. Solanki, M. Velli, R. F. Wimmer-Schweingruber, P. Spietz, and R. Reinhard. Gossamer roadmap technology reference study for a solar polar mission. Glasgow, UK, June 2013. 3rd International Symposium on Solar Sailing.Google Scholar
  17. 17.
    E. T. Lu and S. G. Love. Gravitational tractor for towing asteroids. Nature, 438:177–178, 2005.Google Scholar
  18. 18.
    B. Wie. Dynamics and control of gravity tractor spacecraft for asteroid deection. Journal of Guidance Control and Dynamics, 31(5):1413–1423, 2008.Google Scholar
  19. 19.
    B. Dachwald. Solar sail dynamics and control. In R. Blockley and W. Shyy, editors, Encyclopedia of Aerospace Engineering. Wiley Online Library, 2010.Google Scholar
  20. 20.
    B. Dachwald. Optimization of very-low-thrust trajectories using evolutionary neurocontrol. Acta Astronautica, 57(2-8):175–185, 2005.Google Scholar
  21. 21.
    B. Dachwald and A. Ohndorf. 1st ACT global trajectory optimisation competition: Results found at DLR. Acta Astronautica, 61:742–752, 2007.Google Scholar
  22. 22.
    E. Morrow, D. J. Scheeres, and D. Lubin. Solar sail orbit operations at asteroids. Journal of Spacecraft and Rockets, 38(2):279–286, 2001.Google Scholar
  23. 23.
    E. Morrow, D. J. Scheeres, and D. Lubin. Solar sail orbit operations at asteroids: Exploring the coupled e_ect of an imperfectly reecting sail and a nonspherical asteroid. August 2002. AIAA Paper 2002-4991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bernd Dachwald
    • 1
    Email author
  • Hermann Boehnhardt
    • 2
  • Ulrich Broj
    • 3
  • Ulrich R. M. E. Geppert
    • 4
    • 5
  • Jan-Thimo Grundmann
    • 4
  • Wolfgang Seboldt
    • 4
  • Patric Seefeldt
    • 4
  • Peter Spietz
    • 4
  • Les Johnson
    • 6
  • Ekkehard Kührt
    • 7
  • Stefano Mottola
    • 7
  • Malcolm Macdonald
    • 8
  • Colin R. McInnes
    • 8
  • Massimiliano Vasile
    • 8
  • Ruedeger Reinhard
    • 9
  1. 1.Faculty of Aerospace EngineeringFH Aachen University of Applied SciencesAachenGermany
  2. 2.Planets and Comets DepartmentMax-Planck-Institute for Solar System ResearchKatlenburg-LindauGermany
  3. 3.Institute of Flight System DynamicsRWTH Aachen UniversityAachenGermany
  4. 4.Institute of Space SystemsGerman Aerospace Center (DLR)BremenGermany
  5. 5.Kepler Institute of AstronomyUniversity of Zielona GoraZielona GoraPoland
  6. 6.Advanced Concepts Office (ED04)NASA MSFCHuntsvilleUSA
  7. 7.Institute of Planetary ResearchGerman Aerospace Center (DLR)BerlinGermany
  8. 8.Advanced Space Concepts LaboratoryUniversity of StrathclydeGlasgowUK
  9. 9.European Space AgencyNoordwijkThe Netherlands

Personalised recommendations