Dependence of Multivariate Extremes

Conference paper
Part of the Studies in Theoretical and Applied Statistics book series (STAS)

Abstract

We give necessary and sufficient conditions for two sub-vectors of a random vector with a multivariate extreme value (MEV) distribution, corresponding to the limit distribution of the maximum of a multidimensional stationary sequence with extremal index, to be independent or totally dependent. Those conditions involve first relations between the multivariate extremal indices of the sequences and secondly a coefficient that measures the strength of dependence between both sub-vectors. The main results are illustrated with an auto-regressive sequence and a 3-dependent sequence.

References

  1. 1.
    Chernick, M., Hsing, T., and McCormick, W.: Calculating the extremal index for a class of stationary sequences. Adv. Appl. Prob. 23, 835–850 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Davis, R.: Limit laws for the maximum and minimum of stationary sequences. Z. Wahrsch. verw. Gebiete 61, 31–42 (1982)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ferreira, H.: Dependence between two multivariate extremes. Statist. Prob. Letters 81(5), 586–591 (2011)MATHCrossRefGoogle Scholar
  4. 4.
    Hsing, T.: Extreme value theory for multivariate stationary sequences. J. Mult. Anal. 29, 274–291 (1989)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrsch. verw. Gebiete 65, 291–306 (1983)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Martins, A.P., Ferreira, H.: Measuring the extremal dependence. Statist. Prob. Letters 73, 99–103 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Nandagopalan, S.: Multivariate extremes and estimation of the extremal index. Ph.D. Thesis, Department of Statistics, University of North Carolina, Chapel Hill (1990)Google Scholar
  8. 8.
    Pereira, L.: Valores extremos multidimensionais de variáveis dependentes. Ph.D. Thesis, University of Beira Interior, Portugal (2002)Google Scholar
  9. 9.
    Smith, R.L., Weissman, I.: Characterization and estimation of the multivariate extremal index. Technical report, University of North Carolina at Chapel Hill, NC, USA (1996) In http://www.stat.unc.edu/postscript/rs/extremal.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Viseu
    • 1
  • L. Pereira
    • 2
  • A. P. Martins
    • 2
  • H. Ferreira
    • 2
  1. 1.Polytechnic Institute of CoimbraCoimbraPortugal
  2. 2.University of Beira InteriorCovilhãPortugal

Personalised recommendations