On the Maximum and Minimum of a Stationary Random Field

Conference paper
Part of the Studies in Theoretical and Applied Statistics book series (STAS)


We determine the class of nondegenerate joint-limiting distributions for the maximum and minimum of stationary random fields \(\mathbf{X} = \left \{X_{\mathbf{n}}\right \}_{\mathbf{n\in {\mathbb{N}}^{2}}}\) satisfying a long-range dependence restriction for each coordinate direction at a time. Unlike the classical result for i.i.d. random fields the maximum and minimum of X may be asymptotically dependent. We also give a sufficient condition for the asymptotic independence of the maximum and minimum. Additional conditions are given in order to obtain the asymptotic independence of the locations of maximum and minimum.


  1. 1.
    Choi, H.: Central limit theory and extremes of random fields. Phd Dissertation, Univ. of North Carolina, Chapel Hill (2002)Google Scholar
  2. 2.
    Davis, R.: Limit laws for the maximum and minimum of stationary sequences. Z. Whars. verw. Gebiete 61, 31–42 (1982)MATHCrossRefGoogle Scholar
  3. 3.
    Leadbetter, M.R., Rootzén, H.: On extreme values in stationary random fields, Stochastic processes and related topics. Trends Math, pp. 275–285. Birkhauser, Boston (1998)Google Scholar
  4. 4.
    Martins, A., Pereira, L., Ferreira, H.: Localizaões do máximo e do mínimo em sucessões com índices extremais. Actas do XI Congresso da Sociedade Portuguesa de Estatística (2004)Google Scholar
  5. 5.
    Pereira, L.: On the extremal behavior of a nonstationary normal random field. J. Stat. Plan. Infer. 140, 3567–3576 (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Pereira, L.: The asymptotic location of the maximum of a stationary random field. Stat. Probabil. Lett. 79, 2166–2169 (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Pereira, L., Ferreira, H.: The asymptotic locations of the maximum and minimum of stationary sequences. J. Stat. Plan. Infer. 104, 287–295 (2002)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Beira InteriorCovilhãPortugal

Personalised recommendations