Generalized F Tests in Models with Random Perturbations: The Truncated Normal Case

  • Célia Nunes
  • Dário Ferreira
  • Sandra Ferreira
  • João T. Mexia
Conference paper
Part of the Studies in Theoretical and Applied Statistics book series (STAS)


This paper shows how to obtain explicit expressions for non-central generalized F distributions with random non-centrality parameters. We consider the case when these parameters are random variables with truncated Normal distribution, for the usual F distribution and for the generalized F distribution.



The authors are grateful to the anonymous referees for their useful comments and remarks. This work was partially supported by the center of Mathematics, University of Beira Interior, under the project PEst-OE/MAT/UI0212/2011.


  1. 1.
    Davies, R.B.: Algorithm AS 155: The distribution of a linear combinations of χ 2 random variables. Appl. Stat. 29, 232–333 (1980)Google Scholar
  2. 2.
    Fonseca, M., Mexia, J.T., Zmyślony, R.: Exact distribution for the generalized F tests. Discuss. Math. Probab. Stat. 22, 37–51 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gaylor, D.W., Hopper, F.N.: Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite’s formula. Technometrics 11, 691–706 (1969)CrossRefGoogle Scholar
  4. 4.
    Imhof, J.P.: Computing the distribution of quadratic forms in normal variables. Biometrika 48, 419–426 (1961)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Michalski, A., Zmyślony, R.: Testing hypothesis for variance components in mixed linear models. Statistics 27, 297–310 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Michalski, A., Zmyślony, R.: Testing hypothesis for linear functions of parameters in mixed linear models. Tatra Mt. Math. Publs. 17, 103–110 (1999)zbMATHGoogle Scholar
  7. 7.
    Nunes, C., Mexia, J.T.: Non-central generalized F distributions. Discuss. Math. Probab. Stat. 26, 47–61 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Nunes, C., Ferreira, S., Ferreira, D.: Generalized F tests in models with random perturbations: The Gamma case. Discuss. Math. Probab. Stat. 29(2), 185–198 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Nunes, C., Ferreira, D., Ferreira, S., Mexia, J.T.: Generalized F distributions with random non-centrality parameters: The convolution of Gamma and Beta variables. Far East J. Math. Sci. 62(1), 1–14 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Robbins, H.: Mixture of distribution. Ann. Math. Statist. 19, 360–369 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Robbins, H., Pitman, E.J.G.: Application of the method of mixtures to quadratic forms in normal variates. Ann. Math. Statist. 20, 552–560 (1949)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Satterthwaite, F.E.: An approximate distribution of estimates of variance components. Biometrics Bull. 2, 110–114 (1946)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Célia Nunes
    • 1
  • Dário Ferreira
    • 1
  • Sandra Ferreira
    • 1
  • João T. Mexia
    • 2
  1. 1.Department of MathematicsUniversity of Beira InteriorCovilhãPortugal
  2. 2.Department of MathematicsNew University of LisbonCaparicaPortugal

Personalised recommendations