Advertisement

Scaling Exponents in Heart Rate Variability

  • Argentina LeiteEmail author
  • Maria Eduarda Silva
  • Ana Paula Rocha
Conference paper
Part of the Studies in Theoretical and Applied Statistics book series (STAS)

Abstract

Long recordings of heart rate variability (HRV) display non-stationary characteristics and exhibit long- and short-range correlations. The nonparametric methodology detrended fluctuation analysis (DFA) has become a widely used technique for the detection of long-range correlations in non-stationary HRV data. Recently, we have proposed an alternative approach based on fractional integrated autoregressive moving average (ARFIMA) modelling. These models are an extension of the AR models usual in HRV analysis and have special interest for applications because of their ability for modelling both short- and long-term behaviour of a time series. In this work, DFA is used to assess also short-range scales, further characterizing the data. The methods are applied to 24 h HRV recordings from the Noltisalis database, collected from healthy subjects, patients suffering from congestive heart failure and heart transplanted patients. The analysis of short-range scales leads to a better discrimination between the different groups.

Notes

Acknowledgements

Research funded by FEDER through the programme COMPETE and by the Portuguese Government through the FCT—Fundação para a Ciência e a Tecnologia—under the projects PEst-C/MAT/UI0144/2011, PEst-C/MAT/UI4106/2011, and PEst-OE/MAT/UI4080/2011.

References

  1. 1.
    Baillie, R.T., Cecen, A.A., Erkal, C.: Normal heartbeat series are nonchaotic, nonlinear, and multifractal: new evidence from semiparametric and parametric tests. Chaos 19(028503), 1–5 (2009)Google Scholar
  2. 2.
    Boukhan, P., Oppenheim, G., Taqqu, M.S.: Theory and applications of long-range dependence. Birkhäuser, Boston (2003)Google Scholar
  3. 3.
    Cerutti, S., Esposti, F., Ferrario, M., Sassi, R., Signorini, M.G.: Long-term invariant parameters obtained from 24-h Holter recordings: a comparison between different analysis techniques. Chaos 17(1), 015108–015109 (2007)CrossRefGoogle Scholar
  4. 4.
    Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Leite, A., Rocha, A.P., Silva, M.E.: Long memory and volatility in HRV: an ARFIMA-GARCH approach. In: Computers in Cardiology, 36, 165–168 (2009)Google Scholar
  6. 6.
    Leite, A., Rocha, A.P., Silva, M.E., Costa, O.: Modelling long-term heart rate variability: an ARFIMA approach. Biomed. Technol. 51, 215–219 (2006)CrossRefGoogle Scholar
  7. 7.
    Leite, A., Rocha, A.P., Silva, M.E., Gouveia, S., Carvalho, J., Costa, O.: Long-range dependence in heart rate variability data: ARFIMA modelling vs detrended fluctuation analysis. In: Computers in Cardiology 34, 21–24 (2007)Google Scholar
  8. 8.
    Platisa, M.M., Gal, V.: Reflection of heart rate regulation on linear and nonlinear heart rate variability measures. Physiol. Meas. 27, 145–154 (2006)CrossRefGoogle Scholar
  9. 9.
    Peng, C.K., Havlin, S., Stanley, H.E., Golberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–7 (1995)CrossRefGoogle Scholar
  10. 10.
    Penzel, T., Kantelhardt, J.W., Grote, L., Peter, J.H., Bunde, A.: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biol. Eng. 50(10), 1143–1151 (2003).CrossRefGoogle Scholar
  11. 11.
    pgirmess: Data analysis in ecology. R package version 1.5.1. (2011), http://CRAN.R-project.org/package=pgirmess. Accessed on the 3rd May 2011.
  12. 12.
    Pikkujämsä, S.M., Mäkikallio, T.H., Sourander, L.B., Räihä, I.J., Puukka, P., Skyttä, J., Peng, C.-K., Goldberger, A.L., Huikuri, H.V.: Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory. Circulation 100, 393–3991 (1999)CrossRefGoogle Scholar
  13. 13.
    Signorini, M.G., Sassi, R., Cerutti, S.: Working on the NOLTISALIS Database: Measurement of nonlinear properties in heart rate variability signals. In: Proceedings of IEEE-EMBS International Conference, Istanbul, Turkey (IEEE, Piscataway), 547–550 (2001)Google Scholar
  14. 14.
    Task Force of the European Society of Cardiology and North American Society of Pacing Electrophysiology: Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Argentina Leite
    • 1
    Email author
  • Maria Eduarda Silva
    • 2
  • Ana Paula Rocha
    • 3
  1. 1.Departamento de Matemática, Escola de Ciências e TecnologiaUniversidade de Trás-os-Montes e Alto Douro and CM-UTADChavesPortugal
  2. 2.Faculdade de EconomiaUniversidade do Porto and CIDMAPortoPortugal
  3. 3.Departamento de MatemáticaFaculdade de Ciências, Universidade do Porto and CMUPPortoPortugal

Personalised recommendations