Enhancing Accelerometer-Based Activity Recognition with Capacitive Proximity Sensing

  • Tobias Grosse-Puppendahl
  • Eugen Berlin
  • Marko Borazio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7683)

Abstract

Activity recognition with a wearable accelerometer is a common investigated research topic and enables the detection of basic activities like sitting, walking or standing. Recent work in this area adds different sensing modalities to the inertial data to collect more information of the user’s environment to boost activity recognition for more challenging activities. This work presents a sensor prototype consisting of an accelerometer and a capacitive proximity sensor that senses the user’s activities based on the combined sensor values. We show that our proposed approach of combining both modalities significantly improves the recognition rate for detecting activities of daily living.

Keywords

activity recognition capacitive proximity sensors ambient assisted living user context 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    HedgeHog activity logger, http://www.ess.tu-darmstadt.de/hedgehog (accessed June 17, 2012)
  2. 2.
    Altun, K., Barshan, B.: Human Activity Recognition Using Inertial/Magnetic Sensor Units. In: Salah, A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 38–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Amft, O., Junker, H., Tröster, G.: Detection of eating and drinking arm gestures using inertial body-worn sensors. In: Proceedings of the 9th IEEE International Symposium on Wearable Computers (ISWC 2005), pp. 160–163. IEEE (2005)Google Scholar
  4. 4.
    Bao, L., Intille, S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Berlin, E., Liu, J., van Laerhoven, K., Schiele, B.: Coming to grips with the objects we grasp: Detecting interactions with efficient wrist-worn sensors. In: Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2010, pp. 57–64. ACM, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Borazio, M., Van Laerhoven, K.: Combining wearable and environmental sensing into an unobtrusive tool for long-term sleep studies. In: Proceedings of the 2nd ACM SIGHIT Symposium on International Health Informatics, IHI 2012, pp. 71–80. ACM Press (2012)Google Scholar
  7. 7.
    Brezmes, T., Gorricho, J.L., Cotrina, J.: Activity Recognition from Accelerometer Data on a Mobile Phone. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5518, pp. 796–799. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Cheng, J., Amft, O., Lukowicz, P.: Active Capacitive Sensing: Exploring a New Wearable Sensing Modality for Activity Recognition, pp. 319–336 (2010)Google Scholar
  9. 9.
    Fishkin, K., Philipose, M., Rea, A.: Hands-on rfid: wireless wearables for detecting use of objects. In: Proceedings of the 9th IEEE International Symposium on Wearable Computers (ISWC 2005), pp. 38–41 (October 2005)Google Scholar
  10. 10.
    Grosse-Puppendahl, T., Braun, A.: Honeyfish - a high resolution gesture recognition system based on capacitive proximity sensing. In: Embedded World Conference 2012, pp. 1–10 (2012)Google Scholar
  11. 11.
    Große-Puppendahl, T.A., Marinc, A., Braun, A.: Classification of User Postures with Capacitive Proximity Sensors in AAL-Environments. In: Keyson, D.V., Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G., Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 314–323. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Holleczek, T., Schoch, J., Arnrich, B., Troandster, G.: Recognizing turns and other snowboarding activities with a gyroscope. In: Proceedings of the 14th IEEE International Symposium on Wearable Computers (ISWC 2010), pp. 1–8 (October 2010)Google Scholar
  13. 13.
    Krause, A., Siewiorek, D., Smailagic, A., Farringdon, J.: Unsupervised, dynamic identification of physiological and activity context in wearable computing. In: Proceedings of the 7th IEEE International Symposium on Wearable Computers (ISWC 2003), pp. 88–97. IEEE Computer Society, Washington, DC (2003)Google Scholar
  14. 14.
    Mühlsteff, J., Such, O., Schmidt, R., Perkuhn, M., Reiter, H., Lauter, J., Thijs, J., Müsch, G., Harris, M.: Wearable approach for continuous ECG and Activity Patient-Monitoring. In: Complexity, pp. 2184–2187 (2004)Google Scholar
  15. 15.
    Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Proceedings of the 9th IEEE International Symposium on Wearable Computers (ISWC 2005), pp. 44–51 (2005)Google Scholar
  16. 16.
    Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hahnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3(4), 50–57 (2004)CrossRefGoogle Scholar
  17. 17.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 1541. AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA (2005)Google Scholar
  18. 18.
    Smith, J.R.: Field mice: Extracting hand geometry from electric field measurements. IBM Syst. J. 35(3-4), 587–608 (1996)CrossRefGoogle Scholar
  19. 19.
    Smith, J.R., Gershenfeld, N., Benton, S.A.: Electric Field Imaging. Technology (1999)Google Scholar
  20. 20.
    Srinivasan, R., Chen, C., Cook, D.: Activity recognition using actigraph sensor. In: Proceedings of the Fourth Int. Workshop on Knowledge Discovery form Sensor Data (ACM SensorKDD 2010), Washington, DC, pp. 25–28 (July 2010)Google Scholar
  21. 21.
    Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., Tröster, G.: Wearable activity tracking in car manu- facturing. IEEE Pervasive Computing 7, 42–50 (2008)CrossRefGoogle Scholar
  22. 22.
    Stikic, M., Huynh, T., Van Laerhoven, K., Schiele, B.: ADL Recognition Based on the Combination of RFID and Accelerometer Sensing. In: Proceedings of the 2nd International Conference on Pervasive Computing Technologies for Healthcare (Pervasive Health 2008), pp. 258–263. IEEE Xplore, Tampere (2008)CrossRefGoogle Scholar
  23. 23.
    Ward, J., Lukowicz, P., Troster, G., Starner, T.: Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1553–1567 (2006)CrossRefGoogle Scholar
  24. 24.
    Wimmer, R., Kranz, M., Boring, S., Schmidt, A.: A Capacitive Sensing Toolkit for Pervasive Activity Detection and Recognition. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2007), pp. 171–180 (2007)Google Scholar
  25. 25.
    Wimmer, R., Kranz, M., Boring, S., Schmidt, A.: CapTable and CapShelf - Unobtrusive Activity Recognition Using Networked Capacitive Sensors. Group Networked (2007)Google Scholar
  26. 26.
    Wyss, T., Mader, U.: Recognition of Military-Specific Physical Activities With Body-Fixed Sensors. Military Medicine 175(11), 858–864 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tobias Grosse-Puppendahl
    • 1
  • Eugen Berlin
    • 2
  • Marko Borazio
    • 2
  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Embedded Sensing SystemsTechnische Universität DarmstadtGermany

Personalised recommendations