Evolutionary Feature Extraction to Infer Behavioral Patterns in Ambient Intelligence

  • Leila S. Shafti
  • Pablo A. Haya
  • Manuel García-Herranz
  • Eduardo Pérez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7683)


Machine learning methods have been applied to infer activities of users. However, the small number of training samples and their primitive representation often complicates the learning task. In order to correctly infer inhabitant’s behavior a long time of observation and data collection is needed. This article suggests the use of MFE3/GA\(^{D\!R}\), an evolutionary constructive induction method. Constructive induction has been used to improve learning accuracy through transforming the primitive representation of data into a new one where regularities are more apparent. The use of MFE3/GA\(^{D\!R}\) is expected to improve the representation of data and behavior learning process in an intelligent environment. The results of the research show that by applying MFE3/GA\(^{D\!R}\) a standard learner needs considerably less data to correctly infer user’s behavior.


Intelligent Environments Behavioral Inference Machine Learning Genetic Algorithms Constructive Induction Feature Construction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D., Fox, D., Kautz, H., Hähnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Computing, 50–57 (2004)Google Scholar
  2. 2.
    Campo, E., Chan, M.: Detecting abnormal behavior by real-time monitoring of patients. In: AAAI Workshop on Automation as Caregiver, pp. 8–12. AAAI Press (2002)Google Scholar
  3. 3.
    Tapia, E., Intille, S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Mozer, M.: An intelligent environment must be adaptive. Intelligent Systems and Their Applications 14, 11–13 (1999)CrossRefGoogle Scholar
  5. 5.
    Das, S., Cook, D., Battacharya, A., Heierman, L.T.Y.: The role of prediction algorithms in the mavhome smart home architecture. IEEE in Wireless Communications 9, 77–84 (2002)CrossRefGoogle Scholar
  6. 6.
    Aggrawal, J., Cai, Q.: Human motion analysis: A review. Computer Vision and Image Understanding 73(3), 428–440 (1999)CrossRefGoogle Scholar
  7. 7.
    Bourke, A., Lyons, G.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering and Physics 30(1), 84–90 (2008)CrossRefGoogle Scholar
  8. 8.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. American Association for Artificial Intelligence 3, 1541–1546 (2005)Google Scholar
  9. 9.
    Huang, P.C., Lee, S.S., Kuo, Y.H., Lee, K.R.: A flexible sequence alignment approach on pattern mining and matching for human activity recognition. Expert Systems with Applications 37, 298–306 (2010)CrossRefGoogle Scholar
  10. 10.
    Liu, H., Motoda, H. (eds.): Feature Extraction, Construction and Selection: A Data Mining Perspective. The International Series in Engineering and Computer Science, SECS, vol. 453. Kluwer Academic Publishers, Norwell (1998)zbMATHGoogle Scholar
  11. 11.
    Shafti, L.S.: Multi-feature Construction based on Genetic Algorithms and Non-algebraic Feature Representation to Facilitate Learning Concepts with Complex Interactions. PhD thesis, Escuela Politecnica Superior, Universidad Autonoma de Madrid (2008)Google Scholar
  12. 12.
    Shafti, L.S., Pérez, E.: Evolutionary multi-feature construction for data reduction: A case study. Journal of Applied Soft Computing 9(4), 1296–1303 (2009a)CrossRefGoogle Scholar
  13. 13.
    Shafti, L.S., Pérez, E.: Feature Construction and Feature Selection in Presence of Attribute Interactions. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 589–596. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A Long-Term Evaluation of Sensing Modalities for Activity Recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Guan, D., Yuan, W., Lee, Y., Gavrilov, A., Lee, S.: Activity recognition based on semi-supervised learning. In: The 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 469–475. IEEE Computer Society (2007)Google Scholar
  16. 16.
    Lustrek, M., Kaluza, B.: Fall detection and activity recognition with machine learning. Informatica 33, 205–212 (2009)Google Scholar
  17. 17.
    van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: An activity monitoring system for elderly care using generative and discriminative models. Personal and Ubiquitous Computing 14, 489–498 (2010)CrossRefGoogle Scholar
  18. 18.
    Blake, C., Merz, C.: UCI repository of machine learning databases (1998)Google Scholar
  19. 19.
    Freitas, A.A.: Understanding the crucial role of attribute interaction in data mining. Artificial Intelligence Review 16(3), 177–199 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  21. 21.
    Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC, New York (2007)zbMATHGoogle Scholar
  22. 22.
    Zhao, Z., Liu, H.: Searching for interacting features in subset selection. Intelligent Data Analysis 13, 207–228 (2009)Google Scholar
  23. 23.
    Estébanez, C., Valls, J.M., Aler, R.: GPPE: a method to generate ad-hoc feature extractors for prediction in financial domains. Applied Intelligence 29(2), 174–185 (2008)CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Rockett, P.I.: Domain-independent feature extraction for multi-classification using multi-objective genetic programming. Pattern Analysis and Applications 13 (2009)Google Scholar
  25. 25.
    Zupan, B., Bratko, I., Bohanec, M., Demsar, J.: Function Decomposition in Machine Learning. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 71–101. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Alfred, R.: DARA: Data summarisation with feature construction. In: Asia International Conference on Modelling and Simulation, pp. 830–835. IEEE Computer Society, Kuala Lumpur (2008)CrossRefGoogle Scholar
  27. 27.
    Grunwald, P.D.: The Minimum Description Length Principle. MIT Press (2007)Google Scholar
  28. 28.
    Boulle, M.: Khiops: A statistical discretization method of continuous attributes. Machine Learning 55, 53–69 (2004)zbMATHCrossRefGoogle Scholar
  29. 29.
    Kurgan, L.A., Cios, K.J.: CAIM discretization algorithm. IEEE Transactions on Knowledge and Data Engineering 16(2), 145–153 (2004)CrossRefGoogle Scholar
  30. 30.
    García-Herranz, M., Haya, P.A., Montoro, G., Esquivel, A., Alamán, X.: Easing the smart home: Semi-automatic adaptation in perceptive environments. Journal of Universal Computer Science 14, 1529–1544 (2008)Google Scholar
  31. 31.
    Esquivel, A., Haya, P.A., García-Herranz, M., Alamán, X.: Managing Pervasive Environment Privacy Using the “fair trade” Metaphor. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 804–813. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Haya, P.A., Montoro, G., Alamán, X.: A Prototype of a Context-Based Architecture for Intelligent Home Environments. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2004. LNCS, vol. 3290, pp. 477–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Pidwirny, M.: Daily and annual cycles of temperature, fundamentals of physical geography, 2nd edn. (2006),
  34. 34.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  35. 35.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leila S. Shafti
    • 1
  • Pablo A. Haya
    • 2
  • Manuel García-Herranz
    • 3
  • Eduardo Pérez
    • 3
  1. 1.Computer Science and Engineering Dept.Universidad Carlos III de MadridSpain
  2. 2.Knowledge Engineering InstituteUniversidad Autónoma de MadridSpain
  3. 3.Computer Engineering Dept.Universidad Autónoma de MadridSpain

Personalised recommendations