Advertisement

Sound Environment Analysis in Smart Home

  • Mohamed A. Sehili
  • Benjamin Lecouteux
  • Michel Vacher
  • François Portet
  • Dan Istrate
  • Bernadette Dorizzi
  • Jérôme Boudy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7683)

Abstract

This study aims at providing audio-based interaction technology that lets the users have full control over their home environment, at detecting distress situations and at easing the social inclusion of the elderly and frail population. The paper presents the sound and speech analysis system evaluated thanks to a corpus of data acquired in a real smart home environment. The 4 steps of analysis are signal detection, speech/sound discrimination, sound classification and speech recognition. The results are presented for each step and globally. The very first experiments show promising results be it for the modules evaluated independently or for the whole system.

Keywords

Smart Home Sound Analysis Sound Detection Sound Recognition Speech Distant Recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan, M., Campo, E., Estève, D., Fourniols, J.Y.: Smart homes — current features and future perspectives. Maturitas 64(2), 90–97 (2009)CrossRefGoogle Scholar
  2. 2.
    Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75 (1991)CrossRefGoogle Scholar
  3. 3.
    Vacher, M., Portet, F., Fleury, A., Noury, N.: Development of audio sensing technology for ambient assisted living: Applications and challenges. International Journal of E-Health and Medical Communications 2(1), 35–54 (2011)CrossRefGoogle Scholar
  4. 4.
    Istrate, D., Vacher, M., Serignat, J.F.: Embedded implementation of distress situation identification through sound analysis. The Journal on Information Technology in Healthcare 6, 204–211 (2008)Google Scholar
  5. 5.
    Charalampos, D., Maglogiannis, I.: Enabling human status awareness in assistive environments based on advanced sound and motion data classification. In: Proceedings of the 1st International Conference on Pervasive Technologies Related to Assistive Environments, pp. 1:1–1:8 (2008)Google Scholar
  6. 6.
    Popescu, M., Li, Y., Skubic, M., Rantz, M.: An acoustic fall detector system that uses sound height information to reduce the false alarm rate. In: Proc. 30th Annual Int. Conference of the IEEE-EMBS 2008, August 20-25, pp. 4628–4631 (2008)Google Scholar
  7. 7.
    Badii, A., Boudy, J.: CompanionAble - integrated cognitive assistive & domotic companion robotic systems for ability & security. In: 1st Congres of the Société Française des Technologies pour l’Autonomie et de Gérontechnologie (SFTAG 2009), Troyes, pp. 18–20 (2009)Google Scholar
  8. 8.
    Hamill, M., Young, V., Boger, J., Mihailidis, A.: Development of an automated speech recognition interface for personal emergency response systems. Journal of Neuro Engineering and Rehabilitation 6 (2009)Google Scholar
  9. 9.
    Filho, G., Moir, T.J.: From science fiction to science fact: a smart-house interface using speech technology and a photo-realistic avatar. International Journal of Computer Applications in Technology 39(8), 32–39 (2010)CrossRefGoogle Scholar
  10. 10.
    Lecouteux, B., Vacher, M., Portet, F.: Distant Speech Recognition in a Smart Home: Comparison of Several Multisource ASRs in Realistic Conditions. In: Interspeech 2011, Florence, Italy, p. 4 (August 2011)Google Scholar
  11. 11.
    Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom Activity Monitoring Based on Sound. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 47–61. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Portet, F., Vacher, M., Golanski, C., Roux, C., Meillon, B.: Design and evaluation of a smart home voice interface for the elderly – acceptability and objection aspects. Personal and Ubiquitous Computing (in press)Google Scholar
  13. 13.
    Rougui, J., Istrate, D., Souidene, W.: Audio sound event identification for distress situations and context awareness. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, Minneapolis, USA, pp. 3501–3504 (2009)Google Scholar
  14. 14.
    Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, vol. 11, pp. 487–493. MIT Press (1998)Google Scholar
  15. 15.
    Temko, A., Monte, E., Nadeu, C.: Comparison of sequence discriminant support vector machines for acoustic event classification. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (2005)Google Scholar
  16. 16.
    Wan, V., Renals, S.: Speaker verification using sequence discriminant support vector machines. IEEE Transactions on Speech and Audio Processing, 203–210 (2005)Google Scholar
  17. 17.
    Campbell, W.M., Sturim, D.E., Reynolds, D.A., Solomonoff, A.: SVM based speaker verification using a gmm supervector kernel and nap variability compensation. In: Proceedings of ICASSP 2006, pp. 97–100 (2006)Google Scholar
  18. 18.
    Fauve, B., Matrouf, D., Scheffer, N., Bonastre, J.F.: State-of-the-art performance in text-independent speaker verification through open-source software. IEEE Transactions on Audio, Speech, and Language Processing 15, 1960–1968 (2007)CrossRefGoogle Scholar
  19. 19.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 121–167 (1998)Google Scholar
  20. 20.
    Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002)Google Scholar
  21. 21.
    Sehili, M.A., Istrate, D., Boudy, J.: Primary investigations of sound recognition for a domotic application using support vector. Automation, Computers, Electronics and Mechatronics, vol. 7(34(2)), pp. 61–65. Annals of the University of Craiova (2010)Google Scholar
  22. 22.
    Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mixture models. In: Digital Signal Processing 2000 (2000)Google Scholar
  23. 23.
    Wölfel, M., McDonough, J.: Distant Speech Recognition, p. 573. John Wiley and Sons (2009)Google Scholar
  24. 24.
    Linarès, G., Nocéra, P., Massonié, D., Matrouf, D.: The LIA Speech Recognition System: From 10xRT to 1xRT. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 302–308. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Lecouteux, B., Linarès, G., Estève, Y., Gravier, G.: Generalized driven decoding for speech recognition system combination. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 1549–1552 (2008)Google Scholar
  26. 26.
    Lecouteux, B., Linarès, G., Bonastre, J., Nocéra, P.: Imperfect transcript driven speech recognition. In: InterSpeech 2006, pp. 1626–1629 (2006)Google Scholar
  27. 27.
    Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Proceedings of International Symposium on Music Information Retrieval (2000)Google Scholar
  28. 28.
    Vacher, M., Lecouteux, B., Portet, F.: Recognition of Voice Commands by Multisource ASR and Noise Cancellation in a Smart Home Environment. In: EUSIPCO, Bucarest, Romania, pp. 1663–1667 (August 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohamed A. Sehili
    • 1
    • 3
  • Benjamin Lecouteux
    • 2
  • Michel Vacher
    • 2
  • François Portet
    • 2
  • Dan Istrate
    • 1
  • Bernadette Dorizzi
    • 3
  • Jérôme Boudy
    • 3
  1. 1.ESIGETELAvonFrance
  2. 2.Laboratoire d’Informatique de GrenobleGrenoble 1/Grenoble INP/CNRS UMR 5217GrenobleFrance
  3. 3.Telecom SudParisÉvryFrance

Personalised recommendations