Advertisement

Mass-Dispersed Gravitational Search Algorithm for Gene Regulatory Network Model Parameter Identification

  • Mohsen Davarynejad
  • Zary Forghany
  • Jan van den Berg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)

Abstract

The interaction mechanisms at the molecular level that govern essential processes inside the cell are conventionally modeled by nonlinear dynamic systems of coupled differential equations. Our implementation adopts an S-system to capture the dynamics of the gene regulatory network (GRN) of interest. To identify a solution to inverse problem of GRN parameter identification the gravitational search algorithm (GSA) is adopted here. Contributions made in the present paper are twofold. Firstly the bias of GSA toward the center of the search space is reported. Secondly motivated by observed center-seeking (CS) bias of GSA, mass-dispersed gravitational search algorithm (mdGSA) is proposed here. Simulation results on a set of well-studied mathematical benchmark problems and two gene regulatory networks confirms that the proposed mdGSA is superior to the standard GSA, mainly duo to its reduced CS bias.

Keywords

Gravitational search algorithm Center-seeking bias Mass-dispersed gravitational search algorithm Gene regulatory network model identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeline, P.J.: Using selection to improve particle swarm optimization. In: International Conference on Evolutionary Computation, pp. 84–89 (1998)Google Scholar
  2. 2.
    Chatterjee, A., Mahanti, G.K., Pathak, N.N.: Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Progress In Electromagnetics Research B 25, 331–348 (2010)CrossRefGoogle Scholar
  3. 3.
    Chowdhury, A.R., Chetty, M.: An improved method to infer gene regulatory network using s-system. In: Congress of Evolutionary Computation (CEC 2011), pp. 1012–1019 (2011)Google Scholar
  4. 4.
    Crombach, A., Hogeweg, P.: Evolution of evolvability in gene regulatory networks. PLoS Computational Biology 4(7), e1000112 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davarynejad, M., Ahn, C.W., Vrancken, J.L.M., van den Berg, J., Coello Coello, C.A.: Evolutionary hidden information detection by granulation-based fitness approximation. Applied Soft Computing 10(3), 719–729 (2010)CrossRefGoogle Scholar
  6. 6.
    Davarynejad, M., van den Berg, J.: Simulated big bounce: a continuous space global optimizer. Technical report, Faculty of technology policy and management, Delft University of Technology, The Netherlands (2012)Google Scholar
  7. 7.
    Davarynejad, M., Vrancken, J., van den Berg, J., Coello Coello, C.A.: A Fitness Granulation Approach for Large-Scale Structural Design Optimization. In: Chiong, R., Weise, T., Michalewicz, Z. (eds.) Variants of Evolutionary Algorithms for Real-World Applications, vol. 87, pp. 245–280. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Duman, S., Güvenç, U., Sönmez, Y., Yörükeren, N.: Optimal power flow using gravitational search algorithm. Energy Conversion and Management 59, 86–95 (2012)CrossRefGoogle Scholar
  9. 9.
    Duman, S., Güvenç, U., Yörükeren, N.: Gravitational search algorithm for economic dispatch with valve-point effects. International Review of Electrical Engineering (IREE) 5(6), 2890–2895 (2010)Google Scholar
  10. 10.
    Forghany, Z., Davarynejad, M., Snaar-Jagalska, B.E.: Gene regulatory network model identification using artificial bee colony and swarm intelligence. In: IEEE Conference on Evolutionary Computation (CEC 2012), pp. 949–954 (2012)Google Scholar
  11. 11.
    Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics 19(5), 643–650 (2003)CrossRefGoogle Scholar
  12. 12.
    Li, C., Zhou, J.: Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Conversion and Management 52(1), 374–381 (2011)CrossRefGoogle Scholar
  13. 13.
    Li, C., Zhou, J., Xiao, J., Xiao, H.: Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos, Solitons & Fractals 45(4), 539–547 (2012)CrossRefGoogle Scholar
  14. 14.
    Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recognition 43(11), 3730–3741 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Nakayama, T., Seno, S., Takenaka, Y., Matsuda, H.: Inference of s-system models of gene regulatory networks using immune algorithm. Journal of Bioinformatics and Computational Biology 9, 75–86 (2011)CrossRefGoogle Scholar
  16. 16.
    Noman, N., Iba, H.: Inference of gene regulatory networks using s-system and differential evolution. In: Genetic and Evolutionary Computation Conference, Washington, DC, pp. 439–446 (2005)Google Scholar
  17. 17.
    Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Paul, A.S.: Gravitational Search Algorithm-Based Tuning of Fuzzy Control Systems with a Reduced Parametric Sensitivity. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. AISC, vol. 96, pp. 141–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algorithm. Information Sciences 179(13), 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Engineering Applications of Artificial Intelligence 24(1), 117–122 (2011)CrossRefGoogle Scholar
  20. 20.
    Shaw, B., Mukherjee, V., Ghoshal, S.P.: A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. International Journal of Electrical Power & Energy Systems 35(1), 21–33 (2012)CrossRefGoogle Scholar
  21. 21.
    Sun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation using metaheuristics in systems biology: A comprehensive review. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(1), 185–202 (2012)CrossRefGoogle Scholar
  22. 22.
    Tominaga, D., Okamoto, M., Maki, Y., Watanabe, S., Eguchi, Y.: Nonlinear numerical optimization technique based on a genetic algorithm for inverse problems: Towards the inference of genetic networks. In: German Conference on Bioinformatics Computer Science and Biology, pp. 127–140 (1999)Google Scholar
  23. 23.
    Tsai, K.Y., Wang, F.S.: Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21(7), 1180 (2005)CrossRefGoogle Scholar
  24. 24.
    Vilela, M., Chou, I.C., Vinga, S., Vasconcelos, A.T., Voit, E.O., Almeida, J.S.: Parameter optimization in s-system models. BMC Systems Biology 16(2), 35 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohsen Davarynejad
    • 1
  • Zary Forghany
    • 2
  • Jan van den Berg
    • 1
  1. 1.Faculty of Technology, Policy and ManagementDelft University of TechnologyThe Netherlands
  2. 2.Department of Molecular Cell BiologyLeiden University Medical Center (LUMC)The Netherlands

Personalised recommendations