The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC

  • Anan Banharnsakun
  • Booncharoen Sirinaovakul
  • Tiranee Achalakul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)

Abstract

Artificial Bee Colony (ABC) is a metaheuristic technique in which a colony of artificial bees cooperates in finding good solutions in optimal search space. The algorithm is one of the Swarm Intelligence algorithms explored in recent literature. However, ABC can sometimes be a slow technique to converge. In order to improve its performance the modified version of ABC called Best-so-far ABC were proposed. The results demonstrated that the Bestso- far ABC can produce higher quality solutions with faster convergence than either the original ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to extend the performance analysis of the Best-so-far ABC algorithm by investigating the effect of each proposed modification to the overall performance as well as to present the sensitivity of the parameters setting on the algorithm.

Keywords

Best-so-far Artificial Bee Colony (Best-so-far ABC) Swarm Intelligence Numerical Optimization Sensitivity of the Parameters Setting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbass, H.A.: Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach. In: The Congress on Evolutionary Computation (CEC 2001), pp. 207–214 (2001)Google Scholar
  2. 2.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm, a Novel Tool for Complex Optimisation Problems. In: Proceedings of 2nd International Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459. Elsevier, Oxford (2006)Google Scholar
  3. 3.
    Teodorovíc, D., Dell’Orco, M.: Bee colony optimization - a cooperative learning approach to complex transportation problems. In: Proceedings of the 10th Meeting of the EURO Working Group on Transportation, pp. 51–60 (2005)Google Scholar
  4. 4.
    Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Sundareswaran, K., Sreedevi, V.T.: Development of Novel Optimization Procedure Based on Honey Bee Foraging Behavior. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 1220–1225 (2008)Google Scholar
  6. 6.
    Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey (2005)Google Scholar
  7. 7.
    Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Akbari, R., Mohammadi, A., Ziarati, K.: A Novel Bee Swarm Optimization Algorithm for Numerical Function Optimization. Communications in Nonlinear Science and Number Simulation 15, 3142–3155 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review 31, 61–85 (2009)CrossRefGoogle Scholar
  10. 10.
    Ziarati, K., Akbari, R., Zeighami, V.: On the performance of bee algorithms for resource-constrained project scheduling problem. Applied Soft Computing 11, 3720–3733 (2011)CrossRefGoogle Scholar
  11. 11.
    Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, doi: 10.1007/s10462-012-9328-0Google Scholar
  12. 12.
    Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The Best-so-far Selection in Artificial Bee Colony Algorithm. Applied Soft Computing 11, 2888–2901 (2011)CrossRefGoogle Scholar
  13. 13.
    Banharnsakun, A., Sirinaovakul, B., Achalakul, T.: Job Shop Scheduling with the Best-so-far ABC. Engineering Applications of Artificial Intelligence 25, 583–593 (2012)CrossRefGoogle Scholar
  14. 14.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anan Banharnsakun
    • 1
  • Booncharoen Sirinaovakul
    • 1
  • Tiranee Achalakul
    • 1
  1. 1.Department of Computer EngineeringKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations