Advertisement

Lungenfunktionsdiagnostik

  • S. Fuchs
  • O. Fuchs
  • J. Riedler
  • F. Horak
  • A. Zacharasiewicz
  • M. Barker
Chapter
  • 3.3k Downloads

Zusammenfassung

Lungenfunktionsdiagnostik beinhaltet eine Vielzahl von Messmethoden, mit denen jeweils bestimmte Qualitten der Lungen in verschiedenen Altersgruppen überwiegend nichtinvasiv untersucht werden können.

Literatur

Lungenfunktionsdiagnostik

  1. American Thoracic Society. Single-breath Carbon Monoxide Diffusing Capacity (Transfer Factor). Recommendations for a Standard Technique - 1995 Update. Am J Resp Crit Care Med 1995; 152: 1185–1198Google Scholar
  2. Bates JHT, Schmalisch G, Filbrun D, Stocks J. Tidal breath analysis for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. Eur Respir J 2000; 16: 1180–1192PubMedCrossRefGoogle Scholar
  3. Beardsmore CS. Plethysmography. In: Frey U, Merkus P (eds): European Respiratory Society Monograph 47, Paediatric Lung Function. Plymouth, UK. European Respiratory Society Publications 2010: 66–86Google Scholar
  4. Beydon N, Davis SD, Lombardi E et al. An Official American Toracic Society/European Respiratory Society Statement: Pulmonary Function Testing in Preschool Children. Am J Resp Crit Care Med 2007; 175: 1304–1345PubMedCrossRefGoogle Scholar
  5. Beydon N, Calogero C, Lombardi E. Interrupter technique and passive respiratory mechanics. In: Frey U, Merkus P (eds): European Respiratory Society Monograph 47, Paediatric Lung Function. Plymouth, UK. European Respiratory Society Publications 2010: 105–120Google Scholar
  6. Bisgaard H, Nielsen KG. Plethysmographic Measurements of Specific Airway Resistance in Young Children. Chest 2005; 128: 355–362PubMedCrossRefGoogle Scholar
  7. Frey U, Stocks J, Coates A, Sly P, Bates J. Specifications for equipment used for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. Eur Respir J 2000;16: 731–740PubMedGoogle Scholar
  8. Frey U. Forced oscillation technique in infants and young children. Paed Resp Rev 2005; 6: 246–254CrossRefGoogle Scholar
  9. Fuchs SI, Gappa M. Lung Clearance Index: Clinical and research applications in children. Pediatr Resp Rev 2011; 12: 264–270CrossRefGoogle Scholar
  10. Fuchs O, Latzin P, Thamrin C et al. Normative data for lung function and exhaled nitric oxide in unsedated healthy infants. Eur Respir J. 2011; 37(5): 1208–1216PubMedCrossRefGoogle Scholar
  11. Gappa M, Colin AA, Goetz I, Stocks J. Passive respiratory mechanics:the occlusion techniques. Eur Respir J 2001; 17: 141–148PubMedCrossRefGoogle Scholar
  12. Hoo AF, Dezateux C, Hanrahan JP, Cole TJ, Tepper RS, Stocks J. Sexspecific prediction equations for Vmax(FRC) in infancy: a multicenter collaborative study. Am J Respir Crit Care Med 2002; 165(8): 1084–1092PubMedCrossRefGoogle Scholar
  13. Lindemann H, Leupold W. Lungenfunktionsdiagnostik bei Kindern. Stuttgart. Kohlhammer 2003Google Scholar
  14. Lum S, Stocks J. Forced expiratory manoeuvres. In: Frey U, Merkus P (eds) European Respiratory Society Monograph 47, Paediatric Lung Function. Plymouth, UK. European Respiratory Society Publications 2010: 466–5Google Scholar
  15. Marchal F, Hall G. Forced Oscillation Technique. In: Frey U, Merkus P (eds): European Respiratory Society Monograph 47, Paediatric Lung Function. Plymouth, UK. European Respiratory Society Publications 2010: 121–131Google Scholar
  16. Miller MR, Crapo R, Hankinson J et al. General considerations for lung function testing. Eur Respir J 2005; 26(1): 153–161PubMedCrossRefGoogle Scholar
  17. Miller MR, Hankinson J, Brusasco V et al. Standards of Spirometry. Eur Respir J 2005;26:319–338PubMedGoogle Scholar
  18. Nicolai T. Blutgasanalyse und Monitoring. In Rieger C, von der Hardt H, Sennhauser FH, Wahn U (eds) Pdiatrische Pneumologie. Berlin, Heidelberg. Springer 1999: 144–150Google Scholar
  19. Ranganathan SC, Hoo AF, Lum SY, Goetz I, Castle RA, Stocks J. Exploring the relationship between forced maximal flow at functional residual capacity and parameters of forced expiration from raised lungGoogle Scholar
  20. volume in healthy infants. Pediatr Pulmonol. 2002; 33(6): 419–428Google Scholar
  21. Robinson PD, Latzin P, Gustafsson PM. Multiple Breath Washout. In: Frey U, Merkus P (eds) European Respiratory Society Monograph 47, Paediatric Lung Function. Plymouth, UK. European Respiratory Society Publications 2010: 87–104Google Scholar
  22. Robinson P, Latzin P, Verbanck S et al. Consensus statement for inert gas washout measurement using multiple and single breath tests. Eur Respir J 2013. [Epub ahead of print]Google Scholar
  23. Quanjer PH, Stanojevic S, Cole TJ et al. ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40(6): 1324–43PubMedCrossRefGoogle Scholar
  24. Sly PD, Collins RA, Morgan WJ. Chapter 13, Lung Function in cooperative subjects. In: Taussig LM, Landau LI, Le Souёf PN, Martinez FD, Morgan WJ, Sly PD (eds) Pediatric Respiratory Medicine, 2nd edition, Mosby Elsevier 2008: 907–943Google Scholar
  25. Stocks J, Marchal F, Kraemer, R, Gutkowski P, Bar-Yishay E, Godfrey S. Plethysmographic assessment of functional residual capacity and airway resistance. In: Stocks J, Sly P, Tepper R, Morgan W (eds) Infant respiratory function testing. Wiley-Liss, New York 1996: 191–239Google Scholar
  26. Stocks J, Godfrey S, Beardsmore C, Bar-Yishay E, Castile R. Plethysmographic measurements of lung volumes and airway resistance.Google Scholar
  27. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. Eur Respir J 2001; 17: 302–312Google Scholar
  28. Van Muylem A, Paiva M, A, Baran D, Yernauld JC. Structural Change of the Acinus During Growth Assessed by Single-Breath Tracer Gas Washout. Pediatr Pulmonol 1996; 22: 230–235Google Scholar
  29. Van Muylem A, Baran D. Overall and Peripheral Inhomogeneity of Ventilation in Patients with Sable Cystic Fibrosis. Pediatr Pulmonol 2000; 30: 3–9PubMedCrossRefGoogle Scholar

Flugtauglichkeit

  1. Barben J. Wann darf ein Neugeborenes mit dem Flugzeug reisen? Schweiz Med Forum 2010; 10(9): 166–168Google Scholar
  2. British Thorax Society Standards of Care Committee. Managing passengers with respiratory disease planning air travel. British Thoracic Society recommendations. Thorax 2002; 57: 289-304, www. brit-thoracic.org.uk/guidelines.html (revidiert 2004)Google Scholar
  3. British Thorax Society Standards of Care Committee. Managing passengers with stable respiratory disease planning air travel. British Thoracic Society recommendations. Thorax 2011; 66 (1): i1-i30, www.brit-thoracic.org.uk/guidelines.htmlGoogle Scholar
  4. Buchdahl RM, Babiker A, Bush A, Cramer D. Predicting hypoxaemia during flights in children with cystic fibrosis. Thorax 2001; 56: 877–879PubMedCrossRefGoogle Scholar
  5. Buchdahl R, Bush A, Ward S, Cramer D. Pre-flight hypoxic challenge in infants and young children with respiratory disease. Thorax 2004; 59: 100–0CrossRefGoogle Scholar
  6. Lee AP, Yamamoto LG, Relles NL. Commercial airline travel decreases oxygen saturation in children. Paed Emerg Care 2002; 18: 78-80 Withers A, Wilson AC, Hall GL. Air travel and the risk of hypoxia in children. Pediatr Resp Rev 2011; 12: 271–276Google Scholar

Bronchiale Reagibilitt

  1. American Thoracic Society. Guidelines for methacholine and exercise challenge testing-1999. Am J Respir Crit Care Med 2000; 161: 309–329Google Scholar
  2. Avital A, Godfrey S, Springer C. Exercise, methacholine, and adenosine 5’-monophosphate challenges in children with asthma: relation to severity of the disease. Pediatr Pulmonol 2000; 30: 207–214PubMedCrossRefGoogle Scholar
  3. Barben J, Riedler J. Measurement of bronchial responsiveness in children. In: Hammer J, Eber E (eds). Paediatric Pulmonary Function Testing. Karger Basel 2005; 33: 125–136Google Scholar
  4. Joos GF, O’Conner B, Anderson SD et al. Indirect airway challenges. Eur Respir J 2003; 21: 1050–1068PubMedCrossRefGoogle Scholar
  5. Klug B, Bisgaard H. Measurement of lung function in awake 2-4 year old asthmatic children during methacholine challenge and acute athma: A comparison of the impulse oscillation technique, the interrupter technique and the transcutaneous measurement versus whole-body plethysmography. Pediatr Pulmonol 1996; 21: 290–300PubMedCrossRefGoogle Scholar
  6. Modl M, Eber E, Steinbrugger B, Weinhandl E, Zach MS. Comparing methods for assessing bronchial responsiveness in children: single step cold air challenge, multiple step cold air challenge, and histamine provocation. Eur Respir J 1995; 8: 1742–1747PubMedCrossRefGoogle Scholar
  7. Pellegrino R, Viegi G, Brusasco V, Crapo RO et al. Interpretative strategies for lung function tests. Eur Respir J 2005; 26: 948–968PubMedGoogle Scholar
  8. Riedler J, Reade T, Dalton M, Holst D, Robertson CF. Hypertonic saline challenge in an epidemiological survey of asthma in children. Am J Respir Crit Care Med 1994; 150: 1632–1639PubMedCrossRefGoogle Scholar
  9. Suh DI, Lee JK, Kim CK, Koh YY. Bronchial hyperresponsiveness to methacholin/AMP and the bronchodilator response in asthmatic children. Eur Respir J 2011; 37: 800–805PubMedCrossRefGoogle Scholar
  10. Wilson N, Silverman M. Bronchial responsiveness and its measurement. In Silverman M (ed). Childhood asthma and other wheezing disorders. London: Chapman and Hall, 1995:142–174Google Scholar

Messung der Entzündungsparameter

  1. Araujo L, Moreira A, Palmares C, Beltrao M, Fonseca J, Delgado L. Induced sputum in children: success determinants, safety and cell profiles. J Investig Allergol Clin Immunol 2011; 21: 216–221PubMedGoogle Scholar
  2. Bakakos P, Schleich F, Alchanatis M, Lousi R. Induced Sputum in Asthma: From Bench to Bedside. Curr Med Chem 2011; 18: 1415–1422PubMedCrossRefGoogle Scholar
  3. Barbato A, Frischer T, Kuehni CE et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 2009; 34(6): 1264–76PubMedCrossRefGoogle Scholar
  4. Buchvald F, Baraldi E, Carraro S et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J Allergy Clin Immunol 2005; 115(6): 1130–6PubMedCrossRefGoogle Scholar
  5. De Jongste JC. Exhaled Biomarkers. Eur Resp Monograph 2010; 49: 152–231Google Scholar
  6. Dweik RA Boggs PB, Erzurum SC et al. American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011; 184(5): 602–615PubMedCrossRefGoogle Scholar
  7. Gibson PG, Henry RL, Thomas P. Noninvasive assessment of airway inflammation in children: induce sputum, exhaled nitric oxide, and breath condensate. Eur Respir J 2000; 16: 1008–1015PubMedGoogle Scholar
  8. Horak F Jr, Moeller A, Singer F et al. Longitudinal monitoring of pediatric cystic fibrosis lung disease using nitrite in exhaled breath condensate. Pediatr Pulmonol. 2007; 42(12): 1198–206PubMedCrossRefGoogle Scholar
  9. Horvath I, Hunt J, Barnes PJ. ATS/ERS Task force. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 2005; 26: 523–548PubMedCrossRefGoogle Scholar
  10. Lex C, Payne DN, Zacharasiewicz A et al. Sputum induction in children with difficult asthma: safety, feasibility, and inflammatory cell pattern. Pediatr Pulmonol 2005; 39(4): 318–24PubMedCrossRefGoogle Scholar
  11. Rosias P. The development of exhaled breath condensate. Schrijen- Lippertz-Huntjens; ISBN: 978-90-5890–0269Google Scholar
  12. Silkoff PE, Dexkin A, Dweik R et al. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, Am J Respir Crit Care Med. 2005; 171(8): 912–30Google Scholar
  13. Struben VM, Wieringa MH, Mantingh CJ et al. Nasal NO: normal values in children age 6 to 17 years. Eur Respir J 2005; 26(3): 453–7PubMedCrossRefGoogle Scholar
  14. Zacharasiewicz A, Wilson N, Lex C et al. Clinical use of noninvasive measurements of airway inflammation in steroid reduction in children. Am J Respir Crit Care Med 2005; 171(10): 1077–82PubMedCrossRefGoogle Scholar
  15. Zar HJ Hanslo D, Apolles P, Swingler G, Hussey G. Induced sputum versus gastric lavage for microbiological confirmation of pulmonary tuberculosis in infants and young children: a prospective study. Lancet 2005; 8-14; 365: 130–4Google Scholar

Ergometrie

  1. American Thoracic Society Statement: Guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; 166: 111–117Google Scholar
  2. Aurora P, Wade A, Whitmore P, Whitehead B. A model for predicting life expectancy of children with cystic fibrosis. Eur Respir J 2000; 16: 1056–1060PubMedGoogle Scholar
  3. Balfour-Lynn IM, Prasad SA, Laverty A, Whitehead BF, Dinwiddie R. A step in the right direction. Pediatr Pulmonol 1998; 25: 278–284PubMedCrossRefGoogle Scholar
  4. Baraldi E, Carraro S. Exercise testing and chronic lung disease in children. Paediatr Respir Rev 2006; 7S: S196–S198Google Scholar
  5. Bar-Or O. The Wingate anaerobic test: An update on methodology, reliability and validity. Sports Med 1987; 4: 381–394Google Scholar
  6. Barker M, Gappa M, Hebestreit H. Belastungstestung bei Kindern und Jugendlichen mit chronischen Atemwegserkrankungen. Monatsschr Kinderheilkd 2004; 152: 44–53CrossRefGoogle Scholar
  7. Clement A et al. ERS Task force on chronic interstitial lung disease in immunocompetent children. Eur Respir J 2004; 24: 686–697PubMedCrossRefGoogle Scholar
  8. Dubowy KO, Baden W, Bernitzki S, Peters B. A practical and transferable new protocol for treadmill testing of children and adults. Cardiol Young 2008; 18: 615–623PubMedCrossRefGoogle Scholar
  9. Hebestreit H, Lawrenz W, Zelger O, Kienast W, Jüngst BK. Ergometrie im Kindes- und Jugendalter. Monatsschr Kinderheilkd 1997; 145: 1326–1336CrossRefGoogle Scholar
  10. Nixon PA, Washburn LK, Mudd LM, Webb HH, O’Shea TM. Aerobic fitness and physical activity levels of children born prematurely following randomization to dexamethasone. J Pediatr 2011; 158: 65–70PubMedCrossRefGoogle Scholar
  11. Paridon S, Alpert BS, Boas SR et al. Clinical stress testing in the pediatric age group: A statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension and Obesity in Youth. Circulation 2006; 113: 1905–1920PubMedCrossRefGoogle Scholar
  12. Li AM, Yin J, Au JT et al. Standard reference for the six-minute-walk test in healthy children aged 7 to 16 years. Am J Respir Crit Care Med 2007; 176: 174–180PubMedCrossRefGoogle Scholar
  13. Palange P, Ward SA, Carlsen KH et al. Recommendations on the use of clinical exercise testing - ERS task force report. Eur Respir J 2007; 29: 185–209PubMedCrossRefGoogle Scholar
  14. Roca J, Whipp BJ. Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies - ERS task force report. Eur Respir J 1997; 10: 2662–2689Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Fuchs
    • 1
  • O. Fuchs
    • 2
  • J. Riedler
    • 3
  • F. Horak
    • 4
  • A. Zacharasiewicz
    • 5
  • M. Barker
    • 6
  1. 1.Deutsches Zentrum für Lungenforschung (DZL) Päd. Pneumologie und Allergologie Dr. von Haunersches KinderspitalLudwig-Maximilians-Universität MünchenMünchen
  2. 2.Zentrum für Kinder- und JugendmedizinMarienhospital Wesel gGmbHWesel
  3. 3.Kardinal Schwarzenberg’sches Krankenhaus Kinder- und JugendheilkundeSchwarzach im Pongau
  4. 4.Department für Kinder- und Jugendheilkunde InnsbruckUniversitätsklinik für Pädiatrie III (Kardiologie, Pneumologie, Allergologie, Cystische Fibrose)Innsbruck
  5. 5.WilhelminenspitalWien
  6. 6.HELIOS Klinikum Emil von Behring GmbH Klinik für Kinder- und JugendmedizinPädiatrische Pneumologie und Allergologie Kinderklinik HeckeshornBerlin

Personalised recommendations